Skip to main content

Abstract

The growth of telecommunications is expected to continue, spurred on by several factors, including the globalization of the world economy, the strong dependence of modern industry and society on telecommunications and information systems, and the public demand for access to information. Indeed, the continuous increasing demand for high information capacity systems assures the presence of fiber optical communications systems in the information era.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. C. Kao and H. G. A., “Dielectric-fiber surface waveguides for optical frequencies,” IEE Proceedings, vol. 133, pp. 191–198, June 1986. Pt. J.

    Google Scholar 

  2. A. Werts, “Propagation de la lumiere coherent dans les fibre optiques,” L’Onde Electrique, vol. 46, pp. 967–980, September 1966.

    Google Scholar 

  3. R. J. Mears, L. Reekie, I. M. Jauncey, and D. N. Payne, “Low-noise erbium-doped fibre amplifier operating at 1.54µm.” Elec. Lett., vol. 23, pp. 1026–1028, September 1987.

    Article  Google Scholar 

  4. L. F. Mollenauer and P. V. Mamyshev, “Massive wavelength-division multiplexing with solitons,” IEEE J. Quantum Electronics, vol. 34, pp. 2089–2101, November 1998.

    Article  Google Scholar 

  5. COBRA Institute, “Photonics in communication technologies.” Research proposal, Eindhoven University of Technology, The Netherlands, July 1998.

    Google Scholar 

  6. E. Mos and H. de Waardt, “Laser neural network demonstrates data switching functions,” in ICANN’98, Proceedings of the 8th international conference on artificial neural networks, vol. 2, pp. 1165–1170, Springer, 1998.

    Google Scholar 

  7. H. Kobrinski, “Cross-connection of wavelength division multiplexed high speed channels,” Elec. Lett., vol. 23, pp. 974–975, 1987.

    Article  Google Scholar 

  8. G. R. Hill, “A wavelength routing approach to optical communications networks,” Br. Telecom Techn. J., pp. 24–31, July 1988.

    Google Scholar 

  9. H. J. Westlake et al., “Reconfigurable wavelength routed optical networks: a field demonstration,” in Proc. ECOC, 1991.

    Google Scholar 

  10. G. Hill et al., “A transport networks layer based on optical networks elements,” IEEE/OSA J. Lightwave Technol, vol. 11, pp. 667–679, May/June 1993.

    Article  Google Scholar 

  11. K. Fukuchi, T. Kasamatsu, M. Morie, R. Ohhira, T. Ito, K. Sekiya, D. Ogasahara, and T. Ono, “10.92 Tbit/s (273 × 40Gbit/s) Triple-Band/Ultra-Dense WDM Optical-Repeteared Transmission Experiment,” in Proc. Optical Fiber Comm. Conf. (OFC2001), vol. PD, pp. 24.1–24.2, Anaheim-USA, Mar. 2001.

    Google Scholar 

  12. S. Kawanishi, H. Takara, K. Uchiyama, I. Shake, and K. Mori, “3 Tbit/s (160 Gbit/s × 19 Ch) OTDM/WDM Transmission Experiments,” in Proc. Optical Fiber Comm. Conf. (OFC99), vol. PD, pp. 1.1–1.2, San Diego-USA, Feb. 1999.

    Google Scholar 

  13. IEEE/OSA J. Lightwave Technol, vol. 14 of Special Issue on Multiwavelength Optical technology and Networks. IEEE/OSA, June 1996.

    Google Scholar 

  14. P. E. Green, “Optical networking update,” IEEE J. Selected Areas in Communications, vol. 14, pp. 764–779, June 1996.

    Article  Google Scholar 

  15. G. Prati, ed., Photonic Networks. London: Springer, 1997.

    Google Scholar 

  16. C. G. P. Herben et al, “A compact integrated InP-based single-phasar optical CrossCon¬nect,” IEEE Photon. Technol. Lett., vol. 10, pp. 678–680, May 1998.

    Article  Google Scholar 

  17. J. S. Wellen, Modelling, design and fabrication of a GaAs-based integrated photoreceiver for short distance optical communication. PhD thesis, Eidhoven University of Technology, April 1997.

    Google Scholar 

  18. K. Steenbergen, High Capacity Integrated Optical Receivers. PhD thesis, Delft University of Technology, June 1997.

    Google Scholar 

  19. ACTS, “Advanced photonic experimental x-connect, technical annex,” 1998.

    Google Scholar 

  20. N. Ghani, S. Dixit, and T. Wang, “On IP-over-WDM integration,” IEEE Comm. Magazine, vol. 38, pp. 72–84, March 2000.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Monroy, I.T., Tangdiongga, E. (2002). Introduction. In: Crosstalk in WDM Communication Networks. The Springer International Series in Engineering and Computer Science, vol 678. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3594-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3594-9_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-5275-2

  • Online ISBN: 978-1-4757-3594-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics