Skip to main content

GTP Cyclohydrolase I Gene Expression and Catecholamine Synthesis

  • Chapter

Part of the book series: Advances in Behavioral Biology ((ABBI,volume 53))

Abstract

The reduced pteridine 5,6,7,8-tetrahydrobiopterin (BH4) is the essential cofactor for the family of pterin-dependent monooxygenases that includes tyrosine (TH), tryptophan (TPH) and phenylalanine hydroxylase, the rate-limiting enzymes in the synthesis of the monoamine (MA) neurotransmitters dopamine (DA), norepinephrine and serotonin (5-HT) and the detoxification of L-phenylalanine, respectively (Kaufman, 1974). BH4 serves as an electron donor in these enzyme reactions. GTP cyclohydrolase I (GTPCH) catalyzes the first and rate-limiting step in de novo BH4 biosynthesis, the formation of the first pterin intermediate, D-erythro-7,8-dihydroneopterin triphosphate, from GTP (Nichol et al., 1985). Within the brain GTPCH mRNA (Hirayama et al., 1993) and protein (Nagatsu et. al., 1997; Dassesse et. al., 1997) can only be detected within MA neuronal cell bodies. GTPCH protein is transported to the MA nerve terminals, indicating that BH4 is synthesized at its primary site of action (Levine et al., 1981). The rate of BH4 synthesis actually exceeds that of the MA neurotransmitters, with 25% of the intracellular pool being synthesized each hour (Kapatos, 1990). BH4 levels within DA nerve terminals are subsaturating for TH (Kettler et al., 1974) while BH4 levels within 5-HT nerve endings saturate TPH (Wolf et al., 1991). This distinction based upon neurotransmitter phenotype may be important clinically (see below) and presumably is due to the low levels of GTPCH mRNA (Lentz and Kapatos, 1996) and GTPCH protein (Hirayama and Kapatos, 1998) that are expressed within nigrostriatal DA neurons.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abou-Donia M.M., and Viveros O.H. 1981, Tetrahydrobiopterin increases in adrenal medulla and cortex: a factor in the regulation of tyrosine hydroxylase Proc. Natl. Acad. Sci. USA 78, 2703–2706.

    Article  PubMed  CAS  Google Scholar 

  • Abou-Donia M.M., Wilson S.P., Zimmerman T.P., Nichol C.A., and Viveros O.H. 1986, Regulation of GTP cyclohydrolase and tetrahydrobiopterin levels and the role of the cofactor in tyrosine hydroxylation in primary cultures of adrenomedullary chromaffin cells. J. Neurochem. 46, 1190–1199

    Article  PubMed  CAS  Google Scholar 

  • Anastasiadis P.Z., Bezin L., Gordon L.J., Imerman B., Blitz J., and Levine R.A. 1998, Vasoactive intestinal peptide induces both tyrosine hydroxylase activity and tetrahydrobiopterin biosynthesis in PC 12 cells. Neuroscience 86, 179–189.

    Article  PubMed  CAS  Google Scholar 

  • Dassesse D., Hemmens B., Cuvelier L., and Resibois A. 1997, GTP cyclohydrolase I like immunoreactivity in rat brain. Brain Res. 777, 187–201.

    Article  PubMed  CAS  Google Scholar 

  • De Jong A.P.J.M., Haan E.A., Manson J.L, Wise G.A., Ouvrier R.A., and Wadman S.K. 1989, Kinetic study of catecholamine metabolism in hereditary progressive dystonia Neuropediatrics 20, 3–11.

    Article  PubMed  Google Scholar 

  • Furukawa Y., Kish S.J., Bebin M, Jacobson R.D., Fryburg J., Wilson W.G., Shimadzu M, Hyland K., and Trugman J.M. 1998, Dystonia with motor delay in compound heterozygotes for GTP cyclohydrolase I gene mutations. Ann. Neurol. 44, 10–16.

    Article  PubMed  CAS  Google Scholar 

  • Furukawa Y., Lang A.E., Trugman J.M., Bird T.D., Hunter A., Sadeh M., Tagawa T., St. George-Syslop P.H., Guttman M., Morris L.W., Hornykiewicz O., Shimadzu M., and Kish S.J. 1998, Gender-related penetrance and de novo GTP-cyclohydrolase I gene mutations in dopa-responsive dystonia. Neurology 50, 1015–1020.

    Article  PubMed  CAS  Google Scholar 

  • Hirayama, K., Lentz, S.I., and Kapatos, G. 1993, Tetrahydrobiopterin cofactor biosynthesis: GTP cyclohydrolase I rnRNA expression in rat brain and superior cervical ganglia. J. Neurochem. 61, 1006–1014.

    Article  PubMed  CAS  Google Scholar 

  • Hirayama K. and Kapatos G. 1995, Regulation of GTP cyclohydrolase I gene expression and tetrahydrobioptenn content by nerve growth factor in cultures of superior cervical ganglia. Neurochem. Int. 27, 157–162.

    Article  PubMed  CAS  Google Scholar 

  • Hirayama K., and Kapatos G. 1998, Nigrostriatal dopamine neurons express low levels of GTP cyclohydrolase I protein. J. Neurochem. 70, 164–170.

    Article  PubMed  CAS  Google Scholar 

  • Ichinose H., Ohye T., Takahashi E., Seki N., Hori T., Segawa M., Nomra Y., Endo K., Tanaka H., Tsuji S., Fujita K., and Nagatsu T. 1994, Hereditary progressive dystonia with marked diurnal fluctuation caused by mutations in GTP cyclohydrolase I gene. Nature Genetics 8, 236–242.

    Article  PubMed  CAS  Google Scholar 

  • Ichinose H., Ohye T., Matsuda Y., Hori T., Blau N., Burlina A., Rouse B., Matalon R., Fujita K., and Nagatsu T. 1995, Characterization of mouse and human GTP cyclohydrolase genes. Mutations in patients with GTP cyclohydrolase I deficiency. J. Biol. Chem. 270, 10061–10071.

    Article  Google Scholar 

  • Kapatos, G., Kaufman, S., Weller, J.L., and Klein, D.C. 1981, Biosynthesis of biopterin: Adrenergic cyclic adenosine monophosphate-dependent inhibition in the pineal gland. Science 213, 1129–1131.

    Article  PubMed  CAS  Google Scholar 

  • Kapatos G. 1990, Tetrahydrobiopterin synthesis rate and turnover time in neuronal cultures from rat mesencephalon and hypothalamus. J. Neurochem. 55, 1995–1201.

    Article  Google Scholar 

  • Kapatos, G., Stegenga, S.L., and Hirayama, K. 2000, Identification and characterization of basal and cyclic AMP response elements in the promoter of the rat GTP cyclohydrolase I gene. J. Biol. Chem. 275:5947–5957.

    Article  PubMed  CAS  Google Scholar 

  • Kaufman, S. 1974, Properties of the pterin-dependent hydroxylases. In: Aromatic Amino Acids in the Brain, CIBA Foundation Symposia, Vol. 22, pp. 85–115. Elsevier, Amsterdam.

    Google Scholar 

  • Kettler R., Bartholini G., and Pletscher A. 1974, In vivo enhancement of tyrosine hydroxylation in rat striatum by tetrahydrobiopterin. Nature 249, 476–478.

    Article  PubMed  CAS  Google Scholar 

  • Lentz S.I., and Kapatos G. 1996, Tetrahydrobiopterin biosynthesis in the rat brain: heterogeneity of GTP cyclohydrolase I mRNA expression in monoamine-containing neurons. Neurochem. Int. 28, 569–582.

    Article  PubMed  CAS  Google Scholar 

  • Levine R.A., Miller L.P., and Lovenberg W. 1981, Tetrahydrobiopterin in striatum: Localization to dopamine nerve terminals and role in catecholamine synthesis. Science 214, 919–921.

    Article  PubMed  CAS  Google Scholar 

  • LeWitt P.A., Miller L.P., Levine R.A., Lovenberg W., Newman R.P., Papavasiliou A., Rayes A., Eldridge R., and Burns R.S. 1986, Tetrahydrobiopterin in dystonia: identification of abnormal metabolism and therapeutic trials. Neurol. 36, 760–764.

    Article  CAS  Google Scholar 

  • Nagatsu I., Ichinose H., Sakai M., Titani K., Suzuki M., Nagatsu T. 1995, Immunocytochemical localization of GTP cyclohydrolase I in brain, adrenal gland and liver of mice. J. Neural Transm. 102, 175–188.

    Article  CAS  Google Scholar 

  • Nichol C.A., Smith G.K., and Duch D.S. 1985, Biosynthesis and metabolism of tetrahydrobiopterin and molybdopterin. Ann. Rev. Biochem. 54, 729–764.

    Article  PubMed  CAS  Google Scholar 

  • Niederwieser A. and Curtius H.C. 1987, Tetrahydrobiopterin: biosynthetic pathway and deficiency. Enzyme 38, 302–311.

    PubMed  CAS  Google Scholar 

  • Rajput, A.H., Gibb, W.R.G., Zhong, X.H., Shannak, K.S., Kish, S., Chang, L.G. and Hornykiewicz, O. 1994, Dopa-responsive dystonia: pathological and biochemical observations in a case. Ann. Neurol. 35, 396–402.

    Article  PubMed  CAS  Google Scholar 

  • Segawa M., Hosaka A., Miyazawa F., Nomura Y., and Imai H. 1971, Childhood basal ganglia disease with remarkable response to 1-Dopa, hereditary basal ganglia disease with marked diurnal fluctuation. Shinryo 24, 667–672.

    Google Scholar 

  • Segawa M., Hosaka A., Miyagawa F., Nomura Y., Imai H. 1976, Hereditary progressive dystonia with marked diurnal fluctuation. In: Advances in Neurology. (Eldridge R., and Fahn S., eds) Vol. 14, 215–233.

    Google Scholar 

  • Serova L., Nankova B., Rivkin M., Kvetnansky R., and Sabban E.L. 1997, Glucocorticoids elevate GTP cyclohydrolase I mRNA levels in vivo and in PC 12 cells. Mol. Br. Res. 48, 251–258.

    Article  CAS  Google Scholar 

  • Shimoji M., Hirayama K., Hyland K., and Kapatos G. 1999, GTP cyclohydrolase I gene expression in the brains of male and female hph-1 mice. J. Neurochem. 72, 757–764.

    Article  PubMed  CAS  Google Scholar 

  • Stegenga S.L., Hirayama K., and Kapatos G. 1996, Regulation of GTP cyclohydrolase I gene expression and tetrahydrobiopterin content in cultured sympathetic neurons by leukemia inhibitory factor and ciliary neurotrophic factor. J. Neurochem. 66, 2541–2545.

    Article  PubMed  CAS  Google Scholar 

  • Togari, A., Ichinose, H., Matsumoto, S., Fujita, K. and Nagatsu, T. 1992, Multiple mRNA forms of human GTP cyclohydrolase I. Biochem. Biophys. Res. Com. 187, 359–365.

    Article  PubMed  CAS  Google Scholar 

  • Witter K., Werner T., Blusch J.H., Schneider E.M., Riess O., Ziegler I., Rodl W., Bacher A., and Gutlich M. 1996, Cloning, sequencing and functional studies of the gene encoding human GTP cyclohydrolase I. Gene 171, 285–290.

    Article  CAS  Google Scholar 

  • Wolf W.A., Ziaja E., Arthur R.A.Jr., Anastasiadis P.Z., Levine R.A., and Kuhn D.M. 1991, Effect of tetrahydrobiopterin on serotonin synthesis, release, and metabolism in superfused hippocampal slices. J. Neurochem. 57, 1191–1197.

    Article  PubMed  CAS  Google Scholar 

  • Zhu, M., Hirayama, K., and Kapatos, G. 1994, Regulation of tetrahydrobiopterin biosynthesis in cultured dopamine neurons by depolarization and cAMP. J. Biol. Chem. 269, 11825–11829.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kapatos, G., Hirayama, K. (2002). GTP Cyclohydrolase I Gene Expression and Catecholamine Synthesis. In: Nagatsu, T., Nabeshima, T., McCarty, R., Goldstein, D.S. (eds) Catecholamine Research. Advances in Behavioral Biology, vol 53. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3538-3_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3538-3_31

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3388-1

  • Online ISBN: 978-1-4757-3538-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics