Skip to main content

On the Characterization of Objects in Shallow Water Using Rigorous Inversion Methods

  • Chapter
Inverse Problems in Underwater Acoustics

Abstract

We are concerned herein with inverse obstacle scattering problems in underwater acoustics, where the goal is to characterize an unknown object from measurements of the pressure field which results from its interaction with a known probing (incident) wave. Two configurations are considered, i.e., an impenetrable, sound-soft or sound-hard object immersed in a shallow-water open waveguide, the source and the receivers also being located in it, and a penetrable object embedded in a semi-infinite sediment, illuminated and observed from a semi-infinite water column. The inverse problem consists in retrieving the contour of the impenetrable object or a contrast function representative of the constitutive physical parameters of the penetrable one. This is done by means of deterministic nonlinearized iterative solution methods, one devoted to each configuration, i.e., the distributed source method and the binary modified gradient method. Both of them attempt to build up a solution by minimizing, in an appropriate L 2 setting, a two-term cost functional which expresses the discrepancies between the fields computed by means of the retrieved solution and the data, the latter being either the field measured on the receivers or the known incident field on the boundary of the object (impenetrable case) or inside it (penetrable case). In both configurations the well-known ill-posedness of the inverse scattering problem is enhanced either by range filtering or by the limited aspect of the data, a strong regularization being then needed. This is done by introducing, in the inversion algorithms, some a priori information on the object to be retrieved, which consists in the smoothness of its contour or in its homogeneity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T.S. Angelí, J. Jiang, and R.E. Kleinman. A distributed source method for inverse acoustic scattering. Inverse Problems, 13:531–546, 1997.

    Article  MathSciNet  ADS  Google Scholar 

  2. T.S. Angelí, R.E. Kleinman, B.Kok, and G.F. Roach. A constructive method for identification of an impenetrable scatterer. Wave Motion, 11:185–200, 1989.

    Article  MathSciNet  Google Scholar 

  3. T.S. Angelí, R.E. Kleinman, and G.F. Roach. An inverse transmission problem for the Helmholtz equation. Inverse Problems, 3:149–180, 1987.

    Article  MathSciNet  ADS  Google Scholar 

  4. T.S. Angelí, R.E. Kleinman, C. Rozier, and D. Lesselier. Uniqueness and complete families for an acoustic waveguide problem. Technical Report 96–4, Center for the Mathematics of Waves, University of Delaware, Newark, 1996.

    Google Scholar 

  5. M.J. Buckingham. Ocean-acoustics propagation models. J. of Acoust., 5:223–287,1992.

    Google Scholar 

  6. D. Colton and R. Kress. Inverse Acoustic and Electromagnetic Scattering Theory. Springer-Verlag, New York, 1992.

    Book  MATH  Google Scholar 

  7. M.D. Collins and W.A. Kuperman. Inverse problems in ocean acoustics. Inverse Problems, 10:1023–1040, 1994.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. B. DuchĂȘne, D. Lesselier, and R.E. Kleinman. Inversion of the 1996 Ipswich data using binary specializations of modified gradient methods. Antennas Propagation Mag., 39:9–12, 1997.

    Article  ADS  Google Scholar 

  9. R.P. Gilbert, T. Scotti, A. Wirgin, and Y.S. Xu. The unidentified object problem in a shallow ocean. J. Acoust. Soc. Am., 103:1320–1328, 1998.

    Article  ADS  Google Scholar 

  10. R. Kress. Numerical solution of boundary integral equations in the time-harmonic electromagnetic scattering. Electromagnetics, 10:1–20, 1990.

    Article  Google Scholar 

  11. R.E. Kleinman and P.M. van den Berg. A modified gradient method for two-dimensional problems in tomography. J. Comput. Appl. Math., 42:17–35, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  12. R.E. Kleinman and P.M. van den Berg. An extended range modified gradient technique for profile inversion. Radio Science, 28:877–884, 1993.

    Article  ADS  Google Scholar 

  13. R.E. Kleinman and P.M. van den Berg. Two-dimensional location and shape reconstruction. Radio Science, 29:1157–1169, 1994.

    Article  ADS  Google Scholar 

  14. R.E. Kleinman and P.M. van den Berg. Gradient methods in inverse acoustic and electromagnetic scattering. In L.T. Biegler, T.F. Coleman, A.R. Conn, and F.N. Santosa, (eds.), Large-Scale Optimization with Applications, pp. 173–194. Springer-Verlag, Berlin, 1997.

    Google Scholar 

  15. R.E. Kleinman, P.M. van den Berg, B. DuchĂȘne, and D. Lesselier. Location and reconstruction of objects using a modified gradient approach. In G. Chavent and P.C. Sabatier, (eds.), Inverse Problems of Wave Propagation and Diffraction, pp. 143–158. Springer-Verlag, Berlin, 1997.

    Chapter  Google Scholar 

  16. D. Lesselier and B. DuchĂȘne. Buried two-dimensional penetrable objects illuminated by line sources: FFT-based iterative computations of the anomalous field. In T.K. Sarkar (ed.), Application of Conjugate Gradient Methods to Electromagnetics and Signal Analysis, pp. 400–438. Elsevier, New York, 1991.

    Google Scholar 

  17. D. Lesselier and B. DuchĂȘne. Wavefield inversion of objects in stratified environments. From backpropagation schemes to full solutions. In W.R. Stone, (ed.), Review of Radio Science1993–1996, pp. 235–268. Oxford University Press, Oxford, 1996.

    Google Scholar 

  18. M. Lambert and D. Lesselier. Distributed source method for retrieval of the cross-sectional contour of an impenetrable cylindrical obstacle immersed in a shallow water waveguide. To appear in ACUSTICA—Acta Acustica, 86 (4): 45–24. 2000.

    Google Scholar 

  19. A. Litman, D. Lesselier, and F. Santosa. Reconstruction of a two-dimensional binary obstacle by controlled evolution of a level set. Inverse Problems, 14:685–706, 1998.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. Y. Leviatan and Y. Meyouhas. Analysis of electromagnetic scattering from buried cylinders using a multifilament current model. Radio Science, 25:1231–1244, 1990.

    Article  ADS  Google Scholar 

  21. I.-T. Lu. Analysis of acoustic wave scattering by scatterers in layered media using the hybrid ray-mode (boundary integral equation) method. J. Acoust Soc. Am., 86:1136–1142, 1989.

    Article  ADS  Google Scholar 

  22. V. Monebhurrun, B. DuchĂȘne, and D. Lesselier. Three-dimensional inversion of eddy current data for nondestructive evaluation of steam generator tubes. Inverse Problems, 14:707–724, 1998.

    Article  ADS  MATH  Google Scholar 

  23. V. Monebhurrun, D. Lesselier, B. DuchĂȘne, A. Ruosi, M. Valentino, G. Pepe, and G. Peluso. Eddy current nondestructive evaluation using SQUIDs. In D. Lesselier and A. Razek (eds.), Electromagnetic Non-Destructive Evaluation (III), pp. 171–181. IOS Press, Amsterdam, 1999.

    Google Scholar 

  24. C. Rozier and D. Lesselier. Inversion of a cylindrical vibrating body in shallow water from aspect-limited data using filtered SVD and the L-curve. ACUSTICA—Acta Acustica, 82:717–728, 1996.

    MATH  Google Scholar 

  25. C. Rozier, D. Lesselier, T.S. Angeli, and R.E. Kleinman. Shape retrieval of a cylindrical obstacle immersed in shallow water from single-frequency farfields using a complete family method. Inverse Problems, 13:487–508, 1997.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. P.C. Sabatier. Past and future of inverse problems. J. Math. Phys., 2000, to appear.

    Google Scholar 

  27. L. Souriau, B. DuchĂȘne, D. Lesselier, and R.E. Kleinman. A modified gradient approach to inverse scattering for binary objects in stratified media. Inverse Problems, 12:463–481, 1996.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. P.M. van den Berg and R.E. Kleinman. A total variation enhanced modified gradient algorithm for profile reconstruction. Inverse Problems, 11:L5–10, 1995.

    Article  Google Scholar 

  29. P.M. van den Berg and R.E. Kleinman. A contrast source inversion method. Inverse Problems, 13:1607–1620, 1997.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. P.M. van den Berg, A.L. van Broekhoven, and A. Abubakar. Extended contrast source inversion. Inverse Problems, 15:1325–1344, 1999.

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

DuchĂȘne, B., Lambert, M., Lesselier, D. (2001). On the Characterization of Objects in Shallow Water Using Rigorous Inversion Methods. In: Taroudakis, M.I., Makrakis, G.N. (eds) Inverse Problems in Underwater Acoustics. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-3520-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3520-8_8

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-2920-4

  • Online ISBN: 978-1-4757-3520-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics