Skip to main content

Pneumoperitoneum: Metabolic and Mechanical Effects

  • Chapter
Minimally Invasive Cancer Management
  • 225 Accesses

Abstract

The history of the application of pneumoperitoneum is fascinating both from the aspect of diseases treated with this concept and the development of abdominal air insufflation from a technical standpoint.1 The name George Kelling is woven into the modern use of pneumoperitoneum for patients undergoing laparoscopy. Kelling, like many of his contemporary colleagues, considered that pneumoperitoneum might have therapeutic use. He advocated the use of this technique, which he called lufttamponade, for the treatment of patients with significant intestinal and intraabdominal bleeding. Kelling placed a cystoscope into the abdominal cavity of animals to identify organ ischemia, which may be secondary to aggressive instillation of intraabdominal room air.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Litynski GS. Anonymous Highlights in the History of Laparoscopy. Frankfurt: Barbara Bernert Verlag, 1996: 15–33.

    Google Scholar 

  2. Andrus CH, Wittgen CM, Naunheim KS. Anesthetic and physiological changes during laparoscopy and thoracoscopy: the surgeon’s view. Semin Laparosc Surg 1994; 1: 228–240.

    PubMed  Google Scholar 

  3. Horvath KD, Whelan RL, Lier B, et al. The effects of elevated intraabdominal pressure, hypercarbia, and positioning on the hemodynamic responses to laparoscopie colectomy in pigs. Surg Endosc 1998; 12: 107–114.

    Article  PubMed  CAS  Google Scholar 

  4. Ho HS, Gunther RA, Wolfe BM. Intraperitoneal carbon dioxide insufflation and cardiopulmonary functions: laparoscopic cholecystectomy in pigs. Arch Surg 1992; 127: 928–933.

    Article  PubMed  CAS  Google Scholar 

  5. Ikramuddin S, Lucas J, Ellison EC, Schirmer WF, Melvin WS. Detection of aerosolized cells during carbon dioxide laparoscopy. J Gastrointest Surg 1998; 2: 580–584.

    Article  PubMed  CAS  Google Scholar 

  6. Johnstone PAS, Rohde DC, Swartz SE, Fetter JE, Wexner SD. Port site recurrences after laparoscopic and thoracoscopic procedures in malignancy. J Clin Oncol 1996; 14: 1950–1956.

    PubMed  CAS  Google Scholar 

  7. Knolmayer TJ, Asbun HJ, Shibata G, Bowyer MW. An experimental model of cellular aerosolization during laparoscopic surgery. Surg Lapa-rose Endosc 1997; 7: 399–402.

    Article  CAS  Google Scholar 

  8. Lee SW, Southall J, Allendorf J, Bessler M, Whelan RL. Traumatic handling of the tumor independent of pneumoperitoneum increases port site implantation rate of colon cancer in a murine model. Surg Endosc 1998; 12: 828–834.

    Article  PubMed  CAS  Google Scholar 

  9. Mathew G, Watson DI, Ellis T, De Young N, Rofe AM, Jamieson GG. The effect of laparoscopy on the movement of tumor cells and metastasis to surgical wounds. Surg Endosc 1997; 11: 1163 1166.

    Google Scholar 

  10. Evrard S, Falkenrodt A, Park A, Tassetti V, Mutter D, Marescaux J. Influence of CO2 pneumoperitoneum on systemic and peritoneal cell-mediated immunity. World J Surg 1997; 21: 353357.

    Google Scholar 

  11. Kurz A, Sessler D, Lenhardt R. Perioperative normothermia to reduce the incidence of surgical wound infection and shorten hospitalization. N Engl J Med 1996; 334: 1209–1215.

    Article  PubMed  CAS  Google Scholar 

  12. MacFadyen BV Jr. Hypothermia. Surg Endosc 1999; 13: 99–100.

    Article  PubMed  Google Scholar 

  13. Figueredo E, Canosa L. Can hypothermia be evidenced during laparoscopic cholecystectomy? Surg Laparosc Endosc 1997; 7: 378–383.

    Article  PubMed  CAS  Google Scholar 

  14. Volz J, Koster S, Spacek Z, Paweletz N. Characteristic alterations of the peritoneum after carbon dioxide pneumoperitoneum. Surg Endosc 1999; 13: 611–614.

    Article  PubMed  CAS  Google Scholar 

  15. Greene FL. Pneumoperitoneum in the cancer patient: advantages and pitfalls. Semin Surg On-col 1998; 15: 151–154.

    Article  CAS  Google Scholar 

  16. Nussey SS, Bevan DH, Ang VTY, Jenkins JS. Effects of arginine vasopressin (AVP) infusions on circulating concentrations of platelet AVP, factor VIII C and von Willebrand factor. Thromb Haemost 1986; 55: 34–36.

    PubMed  CAS  Google Scholar 

  17. Trokel MJ, Bessler M, Treat MR, Whelan RL, Nowyrod R. Preservation of immune response after laparoscopy. Surg Endosc 1994; 8: 1385 1388.

    Google Scholar 

  18. Allendorf JDF, Bessler M, Whelan RL, et al. Better preservation of immune function after laparoscopic-assisted vs. open bowel resection in a murine model. Dis Colon Rectum 1996; 39: 567–572.

    Article  Google Scholar 

  19. Neuhaus SJ, Ellis T, Rofe AM, Pike GK, Jamieson GG, Watson DI. Tumor implantation following laparoscopy using different insufflation gases. Surg Endosc 1998; 12: 1300–1302.

    Article  PubMed  CAS  Google Scholar 

  20. Reymond MA, Schneider C, Hohenberger W, Kockerling F. The pneumoperitoneum and its role in tumor seeding. Dig Surg 1998; 15: 105109.

    Google Scholar 

  21. Stocchi L, Nelson H. Laparoscopic colectomy for colon cancer: trial update. J Surg Oncol 1998; 68: 255–267.

    Article  PubMed  CAS  Google Scholar 

  22. Goldberg JM, Maurer WG. A randomized comparison of gasless laparoscopy and CO2 pneumoperitoneum. Obstet Gynecol 1997; 90: 416420.

    Google Scholar 

  23. Neuhaus SJ, Watson DI, Ellis T, Dodd T, Rofe AM, Jamieson GG. Efficacy of cytotoxic agents for the prevention of laparoscopic port-site metastases. Arch Surg 1998; 133: 762–766.

    Article  PubMed  CAS  Google Scholar 

  24. Watson DI, Mathew G, Ellis T, Baigrie CF, Rofe AM, Jamieson GG. Gasless laparoscopy may reduce the risk of port-site metastases following laparoscopic tumor surgery. Arch Surg 1997; 132: 166–168.

    Article  PubMed  CAS  Google Scholar 

  25. Schob OM, Allen DS, Benzel E, et al. A comparison of the pathophysiologic effects of carbon dioxide, nitrous oxide, and helium pneumoperitoneum on intracranial pressure. Am J Surg 1996; 172: 248–253.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Greene, F.L. (2001). Pneumoperitoneum: Metabolic and Mechanical Effects. In: Greene, F.L., Heniford, B.T. (eds) Minimally Invasive Cancer Management. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-3444-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3444-7_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-3446-1

  • Online ISBN: 978-1-4757-3444-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics