Skip to main content

Posterior Cramér-Rao Bounds for Sequential Estimation

  • Chapter
Book cover Sequential Monte Carlo Methods in Practice

Part of the book series: Statistics for Engineering and Information Science ((ISS))

Abstract

The posterior filter density of most nonlinear recursive estimation problems cannot be described analytically by a finite number of parameters. Several examples of sub-optimal algorithms for practical sequential estimation have therefore appeared in the literature. Generally, these procedures approximate either the estimation model or the description of the posterior distribution. These inevitable approximations may seriously degrade the estimation performance when compared with the results that would have been obtained had Bayesian inference, based on the true posterior density, been carried out. It is of great practical interest to quantify this performance degradation, and measure the effect of the introduced approximations. A benchmark simulation evaluation against the optimal solution is not possible because it would require infinite computing power and unlimited memory to run the optimal algorithm However, even if it is intractable to implement and run the optimal solution a lower bound on the performance of this solution can be obtained. The estimation error obtained with an optimal algorithm depends only on the fundamental properties of the model, e.g. signal-to-noise levels and prior assumptions on the sought parameters. Characteristics of the estimation error from the optimal solution define lower limits on the performance that can be achieved using any practical implementation. The characteristics of the sub-optimal estimation error achieved by an approximate implementation are revealed in simulations using the implemented procedure. The discrepancy from the lower bound gives an indication of the effect of the approximations introduced in the implemented algorithm. A relative comparison between the sub-optimal and the optimal algorithms is therefore possible even if it is intractable to implement the optimal solution. A lower bound on some property of the estimation error is convenient for evaluation purposes, but can also be used to shed light on the fundamental performance level that can be reached for the estimation problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bergman, N. (2001). Posterior Cramér-Rao Bounds for Sequential Estimation. In: Doucet, A., de Freitas, N., Gordon, N. (eds) Sequential Monte Carlo Methods in Practice. Statistics for Engineering and Information Science. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-3437-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3437-9_15

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-2887-0

  • Online ISBN: 978-1-4757-3437-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics