Skip to main content

The Late Maunder Minimum (1675–1715) — Climax of the ‘Little Ice Age’ in Europe

  • Chapter
History and Climate

Abstract

The Maunder Minimum (MM; 1645–1715) delineates the coldest phase of the so-called ‘Little Ice Age’ (LIA; variously assessed as ~AD 1300 to 1900; Holzhauser, 1997; Pfister et al., 1998; Wanner et al., 2000) with marked climatic variability over wide parts of Europe. This period coincides with an enhanced volcanic (Briffa et al., 1998) and a reduced solar activity, as well as a low number of sunspots (Spörer, 1887; Maunder, 1922; Eddy, 1976) and an increase in atmospheric 14C (Stuiver and Braziunas, 1993). Estimates of the total radiative solar output changes for the MM are in the order of 0.2 to 0.4% relative to present levels (Hoyt and Schatten, 1993; Nesmes-Ribes et al., 1993; Lean et al., 1995; Reid, 1997; Lean and Rind, 1998; 1999). Solar activity during the MM was near its lowest levels within the past 8000 years (Lean and Rind, 1999) and the UV (200–300 nm) irradiance was also lower (Lean et al., 1995). This in turn could have had an influence on stratospheric chemistry (ozone) and dynamics (absorption). The reduced solar activity might have resulted in a decrease of the stratospheric ozone content as proposed by Wuebbles et al. (1998). In agreement with this proposal, levels of δ14C and δ10Be cosmogenic isotopes in tree-rings and ice cores were found to be elevated (Eddy, 1976; Stuiver and Braziunas, 1993). However, several authors (i.e. Landsberg, 1980; Cullen, 1980; Xu et al., 2000) believe that a decline in solar activity may not have been the cause of the climate severity during the LMM, since evidence from numerous local histories, especially from east Asia, suggest that sunspots were not rare in the seventeenth century. Mann et al. (1998) have found lower annual Northern Hemisphere (NH) mean surface temperatures with decreases between 0.2° and 0.4°C compared to the reference period of 1902-1980. Jones et al. (1998) report of a decrease of the NH April to September temperatures in the order of around 0.3°–0.6°C compared to the reference period of 1961–1990. However, there is no evidence of an advance of European alpine glaciers. The Great Aletsch and the Lower Grindelwald Glaciers show a series of years with a nearly stable or even a negative mass balance (Wanner et al., 2000).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alcoforado, M.J., Nunes, M.F., Garcia, J.C., and Taborda J.P., 2000, Temperature and precipitation reconstructions in southern Portugal during the Late Maunder Minimum (1675 to 1715), The Holocene 10, in press.

    Google Scholar 

  • Banzon, V., de Franceschi, G, and Gregori, G.P., 1992, The mathematical handling and analysis of non homogeneous and incomplete multivariate historical data series, in: European Climate Reconstructed from Documentary Data: methods and results, B. Frenzel, C. Pfister, eds., ESF, Stuttgart, 137–151.

    Google Scholar 

  • Barnett, T., and Preisendorfer, R., 1987, Origins and levels of monthly and seasonal forecasts skill for United States surface air temperature determined by Canonical Correlation Analysis, Mon. Wea. Rev. 115: 1825–1850.

    Article  Google Scholar 

  • Barriendos, M., 1997, Climatic variations in the Iberian peninsula during the Late Maunder Minimum (AD 1675–1715): An analysis of data from rogation ceremonies, The Holocene 7: 105–111.

    Article  Google Scholar 

  • Beer, J., Mende, W., and Stellmacher, R., 2000, The role of the sun in climate forcing, Quat. Sci. Rev. 19: 403–415.

    Article  Google Scholar 

  • Bertrand, C., van Ypersele J.-P., and Berger, A., 1999, Volcanic and solar impacts on climate since 1700, Clim. Dyn. 15: 355–367.

    Article  Google Scholar 

  • Blair, D., 1998, The Kirchhofer technique of synoptic typing revisited, Int. J. Climatol. 18: 1625–1635.

    Article  Google Scholar 

  • Bond, G., Showers, W., Cheseby, M., Lotti, R., Almasi, P., de Menocal, P., Priore, P., Cullen, H., Hajdas, I., and Bonani, B., 1997, A pervasive millennial-scale cycle in North Atlantic Holocene and glacial climates, Science 278: 1257–1266.

    Article  Google Scholar 

  • Borisenkov, Y.P., 1994, Climatic and other natural extremes in the European territory of Russia in the Late Maunder Minimum (1675–1715), in: Climatic Trends and Anomalies in Europe 1675–1715, B. Frenzel, C. Pfister, and B. Glaeser B., eds., Gustav Fischer Verlag, Stuttgart, Jena, New York, 83–94.

    Google Scholar 

  • Boroneant, C., and Chiper, M., 1998, Climatic anomalies in Romanian territory compared to the climate of Europe in the years of Maunder Minimum (1675–1715), Second International Climate and History Conference, Norwich, U.K., September 1998, p. 7.

    Google Scholar 

  • Brazdil, R, Dobrovolny, P., Chocholdc, B., and Munzar, J. 1994, Climatic and other natural extremes in the European territory of Russia in the Late Maunder Minimum (1675–1715), in: Climatic Trends and Anomalies in Europe 1675–1715, B. Frenzel, C. Pfister, and B. Glaeser B., eds., Gustav Fischer Verlag, Stuttgart, Jena, New York, 83–94.

    Google Scholar 

  • Briffa, K.R., Jones, P.D., Schweingruber F.H., and Osborn, T.J., 1998, Influence of volcanic eruptions on northern hemisphere summer temperature over the past 600 years, Nature 393: 450–455.

    Article  Google Scholar 

  • Brown, G.M., and Johns, J.I., 1979, Solar cycle influences in tropospheric circulation, J . Atmos. Terr. Phys. 41: 43–52.

    Article  Google Scholar 

  • Crowley, T.J., and Kim, K.-Y., 1999, Modeling the temperature response to forced climate change over the past six centuries, Geophys. Res. Lett. 26: 1901–1904.

    Article  Google Scholar 

  • Cullen, C., 1980, Was there a Maunder Minimum? Nature 283: 427–428.

    Article  Google Scholar 

  • D’Arrigo, R.D., Jacoby, G.C., Free, M., and Robock, A., 1999, Northern hemisphere temperature variability for the past three centuries: tree-ring and model estimates, Clim. Change 42: 663–675.

    Article  Google Scholar 

  • Dickson, R.R., Meincke, J., Malmberg, S.-A., and Lee, A. J., 1988, The “Great Salinity Anomaly” in the northern North Atlantic 1968–1982, Prog. in Oceanogr. 20:103–151.

    Google Scholar 

  • Eddy, J.A., 1976, The Maunder Minimum, Science 192: 1189–1202.

    Article  Google Scholar 

  • Etheridge, D.M., Steele, L.P., Francey, R.J., and Langenfelds, R., 1998, Atmospheric methane between 1000 AD and present: evidence for anthropogenic emissions and climate variability, J. Geophys. Res. 103: 15979.

    Article  Google Scholar 

  • Free, M., and Robock, A., 1999, Global warming in the context of the Little Ice Age, J. Geophys. Res. 104: 19057–19070.

    Article  Google Scholar 

  • Frydendahl, K., Frich, P., and Hansen, C., 1992, Danish weather observations 1675–1715 (DMI Technical Report 92–3, Danish Meteorological Institute (DMI), Denmark-2100 Copenhagen, p. 23.

    Google Scholar 

  • Glaser, R., Brazdil, R, Pfister, C., Dobrovoln9, P., Barriendos Vallve, M., Bokwa, A., Camuffo, D., Kotyza, O., Limanówka, D., Racz, L., and Rodrigo, F.S., 1999, Seasonal temperature and precipitation fluctuations in selected parts of Europe during the sixteenth century, Clim. Change 43: 169–200.

    Article  Google Scholar 

  • Haigh, J.D., 1994, The role of stratospheric ozone in modulating the solar radiative forcing of climate, Nature 370: 544–546.

    Article  Google Scholar 

  • Haigh, J.D., 1996, The impact of solar variability on climate, Science 272: 981–984.

    Article  Google Scholar 

  • Harrington, C.D. (ed.), 1992, The Year without a Summer. Word Climate in 1816, Canadian Museum of Nature, Ottawa, 576 pp.

    Google Scholar 

  • Heino, R., Brazdil, R., FOrland, E., Tuomenvirta, H., Alexandersson, H., Beniston, M., Pfister, C., Rebetez, M., Rosenhagen, G., Rösner, S., and Wibig, J., 1999, Progress in the study of climatic extremes in northern and central Europe, Clim. Change 42: 151: 181.

    Google Scholar 

  • Holzhauser, H.P., 1997, Fluctuations of the grosser Aletsch glacier and the Gorner glacier during the last 3200 years: new results, in: Paläoklimaforschung/Paleoclimate Research 24: 35–58.

    Google Scholar 

  • Hoyt, D.V., and Schatten, K.H., 1993, A discussion of plausible solar irradiance variations, 1700–1992, J. Geophys. Res. 98: 18895–18906.

    Article  Google Scholar 

  • Hurrell, J.W., 1995, Decadal trends in the North Atlantic Oscillation: regional temperatures and precipitation, Science 269: 676–679.

    Article  Google Scholar 

  • Hurrell, J.W., and van Loon, H., 1997, Decadal variations in climate associated with the North Atlantic Oscillation. Clim. Change 36: 301–326.

    Article  Google Scholar 

  • Huth, R., 1996, An intercomparison of computer-assisted circulation classification methods, Int. J. Climatol. 16: 893–922.

    Article  Google Scholar 

  • Hyde, W.T., and Crowley, T.J., 2000, Probability of future climatically significant volcanic eruptions. J. Climate (Letters) 13: 1445–1450.

    Article  Google Scholar 

  • Jones, P.D., Briffa, K.R., and Schweingruber, F.H., 1995, Tree-ring evidence of the widespread effects of explosive volcanic eruptions, Geophys. Res. Lett. 22: 1333–1336.

    Article  Google Scholar 

  • Jones, P.D., Briffa, K.R., Barnett, T.P., and Tett, S.F.B., 1998, High-resolution palaeoclimatic records for the last millennium: interpretation, integration and comparison with general circulation model control-run temperatures, The Holocene 8: 455–471.

    Article  Google Scholar 

  • Jones, P.D., Davies, T.D., Lister, D.H., Slonosky, V., Jónsson, T., Barring, L., Jönsson P., Maheras, P., Kolyva-Machera, F., Barriendos, M., Martin-Vide, J., Rodriguez, R., Alcoforado, M.J., Wanner, H., Pfister, C., Rickli, R., Luterbacher, J., Schüpbach, E., Kaas, E., Schmith, T., Jacobeit, J., and Beck, C., 1999, Monthly mean pressure reconstruction for Europe for the 1780 — 1995 period, Int. J. Climatol. 19: 347–364.

    Article  Google Scholar 

  • Kaufmann, R.K., Snell, S.E., Gopal, S., and Dezzani, R., 1999, The significance of synoptic patterns identified by the Kirchhofer technique: A Monte Carlo approach, Int. J. Climatol. 19: 619–626.

    Article  Google Scholar 

  • Kington, J., 1995, The severe winter of 1694/95, Weather 50: 160–163.

    Article  Google Scholar 

  • Kington, J., 1997, The severe winter of 1696/97, Weather 52: 386–391.

    Article  Google Scholar 

  • Kington, J., 1999, The severe winter of 1697/98, Weather 54: 43–49.

    Article  Google Scholar 

  • Koslowski, G., and Glaser, R., 1995, Reconstruction of the ice winter severity since 1701 in the western Baltic, Clim. Change 31: 79–98.

    Article  Google Scholar 

  • Koslowski, G., and Glaser, R., 1999, Variations in reconstructed ice winter severity in the western Baltic from 1501 to 1995, and their implications for the North Atlantic Oscillation, Clim. Change 41: 175–191.

    Article  Google Scholar 

  • Kushnir, Y., 1994, Interdecadal variations in North Atlantic sea surface temperature and associated atmospheric conditions, J. Climate 7: 142–157.

    Article  Google Scholar 

  • Kushnir, Y., and Held, I.M., 1996, Equilibrium atmospheric response to North Atlantic SST anomalies’, J. Climate 9: 1208–1220.

    Article  Google Scholar 

  • Lachiver, M., 1991, Les Années de Misère, Fayard, Paris.

    Google Scholar 

  • Lamb, H.H., 1979, Climatic variations and changes in the wind and ocean circulation. The Little Ice Age in the northeast Atlantic, Quaternary Res. 11: 1–20.

    Article  Google Scholar 

  • Lamb, H.H., 1982, Climate, History and the Modern World, Methuen and Co Ltd., London.

    Google Scholar 

  • Landsberg, H.E., 1980, Variable solar emissions, the Maunder Minimum and climatic temperature fluctuations, Arch. Meteor. Geophys. Bioklim. B28: 181.

    Article  Google Scholar 

  • Lean, J., and Rind, D., 1998, Climate Forcing by Changing Solar Radiation, J. Climate 11: 3069–3094.

    Article  Google Scholar 

  • Lean, J., and Rind, D., 1999, Evaluating sun-climate relationships since the little ice age, J. Atmos. Sol.-Terr. Phys. 61: 25–36.

    Article  Google Scholar 

  • Lean, J., Beer, J. and Bradley, R.S., 1995, Reconstruction of solar irradiance since 1610: Implications for climate change, Geophys. Res. Leu. 22: 3195–3198.

    Article  Google Scholar 

  • Legrand, J.-P., and Le Goff, M., 1992, Les observations météorologiques de Louis Morin entre I670 et 1713, in: Direction de la Météorologie Nationale, Monographie Nr. 6, Météo-France, Trappes.

    Google Scholar 

  • Luterbacher, J., Schmutz, C., Gyalistras, D., Xoplaki, E., and Wanner, H., 1999, Reconstruction of monthly NAO and EU indices back to 1675, Geophy. Res. Lett. 26: 2745–2748.

    Article  Google Scholar 

  • Luterbacher, J., and 33 co-authors: 2000a, Reconstruction of monthly mean pressure over Europe for the Late Maunder Minimum period (1675–1715) based on canonical correlation analysis’, Int. J. Climatol., in press.

    Google Scholar 

  • Luterbacher, J., Rickli, R., Xoplaki, E., Tinguely, C. Beck, C., Pfister, C., and Wanner, H., 2000b, The Late Maunder Minimum (1675–1715) — a key period for studying decadal scale climatic change in Europe. Clim. Change, in press.

    Google Scholar 

  • Lyakhov, M., 1987, Years with extreme climatic conditions, in: Data of Meteorological Studies No. 13. Institute of Geography, Academy of Sciences of the USSR: Moscow (in Russian), 119–178.

    Google Scholar 

  • Manley, G., 1974, Central England temperatures: monthly means 1659 to 1973, Quart. J. Roy. Met. Soc. 100: 389–405.

    Article  Google Scholar 

  • Mann, M.E., Bradley, R.S., and Hughes, M.K., 1998, Global-scale temperature patterns and climate forcing over the past six centuries, Nature 392: 779–787.

    Article  Google Scholar 

  • Maunder, E.W., 1922, The prolonged sunspot minimum 1675–1715, Brit. Astron. Ass. J. 32: 140–145.

    Google Scholar 

  • NCAR, 1997, Trenberth’s northern hemispheric sea level pressure, 5°x5°, monthly. DSS/D/DS010.I dataset, Boulder, Colorado.

    Google Scholar 

  • Nesmes-Ribes, E., Ferreira, E.N., Sadourny, R., Le Treut, H., and Li, Z.X., 1993, Solar dynamics and its impact on solar irradiance and the terrestrial climate, J. Geophys. Res. 98: 18923–18935.

    Article  Google Scholar 

  • Ogilvie, A.E.J., 1996, Sea ice conditions off the coasts Iceland AD 1601–1850 with special reference to part of the Maunder Minimum period (1675–1715), AmS-Varia 25, Archaeological Museum of Stavanger, Norway, 9–12.

    Google Scholar 

  • Parker, D.E., Legg, T.P., and Folland, C.K., 1992, A new daily central England temperature series, 1772–1991, Int. J. Climatal. 12: 317–342.

    Article  Google Scholar 

  • Peng, S., and Mysak, L.A, 1993, A teleconnection study of interannual sea surface temperature fluctuations in the North Atlantic and precipitation and runoff over western Siberia, J. Climate 6: 876–885.

    Article  Google Scholar 

  • Pfister, C., 1994, Spatial patterns of climatic change in Europe 1675–1715, in: Climatic Trends and Anomalies in Europe 1675–1715, B. Frenzel, C. Pfister, and B. Glaeser B, eds., Gustav Fischer Verlag, Stuttgart, Jena, New York, 287–317.

    Google Scholar 

  • Pfister, C., 1999, Wetternachhersage. 500 Jahre Klimavariationen und Naturkatastrophen 1496–1995, Paul Haupt Verlag, Bern, Stuttgart, Wien.

    Google Scholar 

  • Pfister, C., Kington, J., Kleinlogel, G., Schäle, H. and Siffert, E., 1994, High resolution spatio-temporal reconstructions of past climate from direct meteorological observations and proxy data, in: Climatic Trends and Anomalies in Europe 1675–1715, B. Frenzel, C. Pfister, and B. Glaeser B., eds., Gustav Fischer Verlag, Stuttgart, Jena, New York, 329–376.

    Google Scholar 

  • Pfister, C., Luterbacher, J., Schwarz-Zanetti, G., and Wegmann, M., 1998, Winter air temperature variations in western Europe during the early and high middle ages (AD 750–1300), The Holocene 8: 535–552.

    Article  Google Scholar 

  • Racz, L., 1999, Climate History of Hungary since 16th Century: Past, Present and Future, Pécs, p. 160. Zoltan Gal, Pécs.

    Google Scholar 

  • Reid, G.C., 1997, Solar forcing of global climate change since the mid-17th century, Clim. Change 37: 391–405.

    Article  Google Scholar 

  • Reverdin, G., Cayan, D.R., and Kushnir, Y., 1997, Decadal variability of hydrography in the upper northern North Atlantic, 1948–1990, J. Geophys. Res. 102: 8505–8532.

    Article  Google Scholar 

  • Rind, D., and Overpeck, J., 1993, Hypothesised causes of decade-to-century climate variability: climate model results, Quat. Sci. Rev. 12: 357–374.

    Article  Google Scholar 

  • Rind, D., Lean, J., and Healy, R., 1999, Simulated time-dependent climate response to solar radiative forcing since 1600’, J. Geophys. Res. 104: 1973–1990.

    Article  Google Scholar 

  • Robock, A., 1994: Review of year without a summer? World climate in 1816. Clim. Change 26: 105–108.

    Article  Google Scholar 

  • Robock, A., 2000: Volcanic eruptions and climate, Rev. Geophys. 38: 191–219.

    Article  Google Scholar 

  • Robock, A., and Free, M.P., 1995, Ice cores as an index of global volcanism from 1850 to the present, J. Geophys. Res. 100: 11549–11567.

    Article  Google Scholar 

  • Robock, A., and Mao, J., 1995, The volcanic signal in surface temperature observations, J. Climate 8: 1086–1103.

    Article  Google Scholar 

  • Schmutz, C., and Wanner, H., 1998, Low frequency variability of atmospheric circulation over Europe, Erdkunde (Earth Science) 52: 81–94.

    Article  Google Scholar 

  • Shindell, D., Rind, D., Balachandran, N., Lean, J., and Lonergan, P., 1999, Solar Cycle variability, Ozone, and Climate, Science 284: 305–308.

    Article  Google Scholar 

  • Spörer, F.W.G., 1887, Über die Periodizität der Sonnenflecken seit dem Jahre 1618, vornehmlich in Bezug auf die heliographische Breite derselben, and Hinweis auf eine erhebliche Störung dieser Periodizität während eines langen Zeitraumes, Vjschr. Astron. Ges. Leipzig 22: 323–329.

    Google Scholar 

  • Stuiver, M., and Braziunas, T.F., 1993, Sun, ocean, climate and atmospheric 14CO2: An evaluation of causal and spectral relationships, The Holocene 3: 289–305.

    Article  Google Scholar 

  • Tinsley, B.A., 1988, ‘The solar cycle and the QBO influences on the latitude of storm track in the North Atlantic, Geophys. Res. Lett. 15: 409–412.

    Google Scholar 

  • Trudinger, C.M., Enting, I.G., Francey, R.J., and Etheridge, D.M., 1999, Long-term variability in the global carbon cycle inferred from a high-precision CO2 and S13C ice-core record, Tellus 51B: 233–248.

    Google Scholar 

  • von Storch, H., and F.W. Zwiers, 1999, Statistical Analysis in Climate Research, Cambridge University Press, London.

    Google Scholar 

  • Wanner, H., Pfister, C., Brazdil, R., Frich, P., Frydendahl, K., Jónsson, T., Kington, J., Rosenorn, S., and Wishman, E., 1995, Wintertime European circulation patterns during the Late Maunder Minimum cooling period (1675–1704), Theor. Appl. Climatol. 51: 167–175.

    Article  Google Scholar 

  • Wanner, H., Holzhauser, HP., Pfister, C., and Zumbühl, H., 2000, Interannual to century scale climate variability in the European Alps. Erdkunde (Earth Science) 54: 62–69.

    Article  Google Scholar 

  • Wuebbles, D.J., Wei, C-F., and Patten, K.O., 1998, Effects on stratospheric ozone and temperature during the maunder minimum, Geophys. Res. Lett. 25: 523–526.

    Article  Google Scholar 

  • Xoplaki, E., Maheras, P., and Luterbacher, J., 2000, Variability of climate in meridional Balkans during the periods 1675–1715 and 1780–1830 and its impact on human life. Clim. Change,in press.

    Google Scholar 

  • Xu, Z.T. et al., 2000, East Asian Astronomical Observations (East Asian Archaeoastronomy: Astronomical Observations in East Asia Historical Records, Gordon and Breach,in press.

    Google Scholar 

  • Yarnal, B., 1993, Synoptic Climatology in Environment Analysis. A Primer. Belhaven Press, London, Florida.

    Google Scholar 

  • Yarnal, B., and Frakes, B., 1997;, A procedure for blending manual and correlation-based synoptic classification, Int. J. Climatol. 17: 1381–1396.

    Google Scholar 

  • Zielinski, G.A., 1995, Stratospheric loading and optical depth estimated of explosive volcanism over the last 2100 years derived from the Greenland ice sheet project 2 ice core, J. Geophys. Res. 100: 20937–20955.

    Article  Google Scholar 

  • Zielinski, G.A., 2000, Use of paleo-records in determining variability within the volcanism-climate system, Quat. Sci. Rev. 19: 417–438.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Luterbacher, J. (2001). The Late Maunder Minimum (1675–1715) — Climax of the ‘Little Ice Age’ in Europe. In: Jones, P.D., Ogilvie, A.E.J., Davies, T.D., Briffa, K.R. (eds) History and Climate. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3365-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3365-5_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3361-4

  • Online ISBN: 978-1-4757-3365-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics