Skip to main content
  • 835 Accesses

Abstract

To find a physical study that considers quantum effect devices at the fundamental level, we have to go back to the tunneling diode by L. Esaki[1]. It is symbolic that he used Ge, which is one of the covalent semiconductors. It is also interesting that silicon materials are attracting attention of many researchers today.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Esaki, L“New phenomenon in narrow germanium p-n junction,” Phys. Rev., vol. 109, p. 603, 1958.

    Article  Google Scholar 

  2. R. Tsu and L. Esaki, Tunneling in a finite superlattice,” Appl. Phys. Lett., vol. 22, p. 562, 1973.

    Article  Google Scholar 

  3. A.C. Warren, D.A. Antoniadis, H.I. Smith, and J. Melngailis, “Surface superlattice formation in Silicon inversion layers using 0.2-μm period grating-gate electrodes,” IEEE Electron device Lett., vol. EDL-6, p. 294, 1985.

    Article  Google Scholar 

  4. A.C. Warren, D.A. Antoniadis and H.I. Smith “Quasi one-dimensional conduction in multiple, Parallel Inversion Lines,” Phys. Rev. Lett., vol. 56, p. 1858, 1986.

    Article  Google Scholar 

  5. H. Matsuoka, T. Ichiguchi, T. Yoshimura and E. Takeda, “Mobility modulation in a quasi-one-dimensional Si-MOSFET with a dual-gate structure,” IEEE Electron Device Lett., vol. 13, p. 20, 1992.

    Article  Google Scholar 

  6. H. Matsuoka, T. Yoshimura, T. Ichiguchi and E. Takeda, “Coulomb blockade in the inversion layer of a Si metal-oxide-semiconductor field-effect transistor with a dual-gate structure,” Appl. Phys. Lett., vol. 64, p. 586, 1994.

    Article  Google Scholar 

  7. Y. Ono, Y. Takahashi, S. Horiguchi, K. Murase and M. Tabe, “Electron tunneling from the edge of thin single-crystal Si layers through SiO2 film,” J. Appl. Phys. vol. 80, p. 4450, 1996.

    Article  Google Scholar 

  8. Y. Omura, “Quantum effect devices on SOI substrates with an ultrathin silicon layer,” from Proc. of NATO Advanced Research Workshop on Perspective, Science and Technology for Novel Silicon on Insulator Devices (Kluwer Academic Publisher, 1999) p. 257.

    Google Scholar 

  9. E. Merzbacher, “Quantum Mechanics,” (3rd ed., Wiley, 1998), chap. 5–7.

    Google Scholar 

  10. A. Hartstein, “Quantum interference in ultrashort channel length silicon metal-oxide-semiconductor field-effect transistors,” Appl. Phys. Lett., vol. 59, p. 2028, 1991.

    Article  Google Scholar 

  11. L.L. Chang, L. Esaki and R. Tsu, “Resonant tunneling in semiconductor double barriers,” Appl. Phys. Lett., vol. 24, p. 593, 1974.

    Article  Google Scholar 

  12. F. Capasso, S. Sen, L.M. Lunardi and A.Y. Cho, “Quantum Transistors and circuits Break through the barriers,” IEEE Circuits and Device, vol. 7, p. 18, 1991.

    Article  Google Scholar 

  13. K. Yuki, Y. Hirai, K. Morimoto, K. Inoue, M. Niwa and J. Yasui, “Fabrication of Novel Si Double-Barrier Structures,” Jpn. J. Appl. Phys., vol. 34, p. 860, 1995.

    Article  Google Scholar 

  14. K.F. Brennan, “The physics of semiconductors,” Cambridge University press, 1999, p. 688.

    Google Scholar 

  15. Y. Fu and M. Willander, “Physical models of semiconductor quantum devices,” Kluwer Academic Publishers, 1999.

    Google Scholar 

  16. J.P. Colinge, X. Baie and V. Bayot, “Evidence of Two-dimensional carrier confinement in thin n-channel SOI gate-all-around (GAA) devices,” IEEE Electron Device Lett., vol. 15, pp. 193–195, 1994.

    Article  Google Scholar 

  17. Y. Omura and M. Nagase, “Low-Temperature Drain Current Characteristics in Sub-10-nm-Thick SOI nMOSFET’s on SIMOX substrates,” Jpn. J. Appl. Phys., vol. 34, p. 812, 1995.

    Article  Google Scholar 

  18. Y. Omura, K. Kurihara, Y. takahashi, T. Ishiyama, Y. Nakajima and K. Izumi, “50-nm channel nMOSFET/SIMOX with an ultrathin 2-or 6-nm thick silicon layer and their significant features of operations,” IEEE Electron Device Lett., vol. 18, p. 190, 1997.

    Article  Google Scholar 

  19. T. Takahashi and M. Miura-Matausch, and Y. Omura, “Transconductance oscillations in metal-oxide-semiconductor field-effect transistors with thin silicon-on-insulator originated by quantized energy levels,” Appl. Phys. Lett., vol. 75, p. 1458, 1999.

    Article  Google Scholar 

  20. Y. Omura, Two-dimensionally confined injection phenomena in sub-10-nm-thick SOI insulated-gate pn-junction devices,” Ext. Abstr. of the 1995 Int. Conf. on Solid State Devices and Materials, p. 563

    Google Scholar 

  21. Y. Omura, “Two-dimensionally confined injection phenomena at low temperatures in sub-10-nm-thick SOI insulated-gate p-n-junction devices,” IEEE Trans. on Electron Devices, vol. 43, p. 436, 1996.

    Article  Google Scholar 

  22. M. Nagase, T. Ishiyama and K. Murase, “Surface Morphology of SIMOX-Si Layers Characterized Using Atomic Force Microscopy,” in Proc. of the 6th Int. Symp. on SOI Technol. (The Electrochemical Society, San Francisco, 1994), p. 191.

    Google Scholar 

  23. Y. Nakajima, Y. Takahashi, S. Horiguchi, K. Iwadate, H. Namatsu, K. Kurihara and M. Tabe, “Quantized conductance of a silicon wire fabricated by separation-by-implanted-oxygentechnology,” Jpn. J. Appl. Phys., vol. 34, p. 1309, 1995.

    Article  Google Scholar 

  24. S. Horiguchi, Y. Nakajima, Y. Takahashi and M. Tabe, “Energy eigenvalues and quantized conductance values of electrons in Si quantum wires on 100 plane,” Jpn. J. Appl. Phys., vol. 34, p. 5489, 1995.

    Article  Google Scholar 

  25. G. Timp, J. Bude, K.K. Bourdelle, J. Garno, A. Ghetti, H. Gossman, M. Green, G. Forsyth, Y. Kim, R. Kleiman, H. Klemens, A. Kornblit, C. Lochstampfor, W. Mandfield, S. Moccio, T. Sorsch, D.M. Tennant, W. Timp, R. Tung, “The ballistic Nanotransistor,” 1999 IEEE Int. Electron Devices Meeting (Washington, 1999), p. 55.

    Google Scholar 

  26. T. Uemura and T. Baba, “First observation of negative differential resistance in surface tunnel transistors,” Jpn. J. Appl. Phys., vol. 33, p. L207, 1994.

    Article  Google Scholar 

  27. Y. Omura, “Distinclt Two-dimensional Carrier Injection Phenomena in Extremely Thin-SOI Insulated-Gate pn-Junction Devices: Prospect of new device applications,” Abstr. Workbook of 9th Int. Conf. on Superlattices, Microstructures and Microstructures, vol. 24, p. 83, 1998.

    Article  Google Scholar 

  28. Y. Omura, “Negative conductance properties in Extremely thin Silicon-on-insulator (SOI) Insulated-gate pn-Junction Devices SOI Surface Tunnel Transistors),” Jpn. J. Appl. Phys. vol. 11 A, p. L1401, 1996.

    Article  Google Scholar 

  29. J. Koga and A. Toriumi, “Negative differential conductance at room temperature vol. 70, p. 2138, 1997.

    Google Scholar 

  30. Y. Omura, “A Lateral Unidirectional, Bipolar-Type, Insulated-Gate Transistor-A New Device,” Applied Phys. Lett., vol. 40, p. 528, 1982.

    Article  Google Scholar 

  31. J. Bardeen, “Tunneling from a many-particle point of view,” Phys. Rev. Lett., vol. 6, p. 57, 1961.

    Article  Google Scholar 

  32. Y. Omura, “Features of indirect-band-to-band tunneling in an insulated-gate lateral pn junction device on a SIMOX substrate with an ultrathin 10-nm-thick silicon layer”, J. Phys. IV, vol. 8, p. Pr3–63, 1998 (Proc. of 3rd European Workshop on Low-Temperature Electronics, Italy).

    Google Scholar 

  33. S. Datta, M.R. Melloch, S. Bandyopadhyay, and M.S. Lundstrom, “Proposed structure for large quantum interference effects,” Appl. Phys. Lett., vol. 48, p. 487, 1986.

    Article  Google Scholar 

  34. S. Datta and S. Bandyopadhyay, “Aharonov-Bohmeffect in semiconductor microstructures,” Phys. Rev. Lett., vol. 58, p. 717, 1987.

    Article  Google Scholar 

  35. D.C. Miller, R.K. Lake, S. Datta, M.S. Lundstrom, M.R. Melloch, and R. Reifenberger, Nanostructure Physics and Fabrication (Academic Press, New York, 1992) P. 165.

    Google Scholar 

  36. H. Sakaki, “Scattering suppression and high-mobility effect of size-quantized electrons in ultrafine semiconductor wire structures,” Jpn. J. Appl. Phys., vol. 19, p. L735, 1980.

    Article  Google Scholar 

  37. T. Ando, A.B. Fowler and F. Stern, “Electronic properties of two-dimensional systems,” Rev. Mod. Phys., vol. 54, p. 437, 1982.

    Article  Google Scholar 

  38. Y. Takahashi, M. Nagase, H. Namatsu, K. Kurihara, K. Iwadate, Y. Nakajima, S. Horiguchi, K. Murase and M. Tabe, “Conductance oscillation of a Si Single Electron transistor at room temperature,” Ext. Abstr. IEEE Int. Electron Devices Meeting (Washington. D.C., 1994) p. 938.

    Google Scholar 

  39. K.K. Likharev, “Single-electron transistors: electronic analogs of the DC squids,” IEEE Trans. Magn., vol. 23, p. 1142, 1987.

    Article  Google Scholar 

  40. J.R. Tucker, “Complementary digital logic based on the Coulomb blockade,” J. Appl. Phys., vol. 72, p. 4399, 1992.

    Article  Google Scholar 

  41. K. Yano, T. Ishii, T. Sano, T. Mine, F. Murai, T. Kure, and K. Seki, “Status of single-electron memories,” Ext. Abstr. 1998 IEEE Int. Electron Device Meeting(San Francisco, 1998), p. 107.

    Google Scholar 

  42. Y. Takahashi, A. Fujiwara, K. Yamazaki, H. Namatsu, K. Kurihara and K. Murase, “A multi-gate single-electron Transistor and its application to an exclusive-OR gate,” Ext. bstr. of 1998 IEEE Int. Electron Devices Meeting(San Francisco, 1998), p. 367.

    Google Scholar 

  43. Y. Ono, Y. Takahashi, K. Yamazaki, M. Nagase, H. Namatsu, K. Kurihara and K. Murase, “Si complementary single-electron inverter,” Ext. Abstr. of 1999 IEEE Int. Electron Devices Meeting(Washington, 1999), p. 367.

    Google Scholar 

  44. N. Takahashi, H. Ishikuro and T. Hiramoto, “A Directional current switch using silicon single electron transistors controlled by charge injection into silicon nano-crystal floating dots,” Ext. Abstr. of 1999 IEEE Int. Electron Devices Meeting(Washington, 1999), p. 371.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Omura, Y. (2001). Quantum Effects and Devices. In: Balestra, F., Ghibaudo, G. (eds) Device and Circuit Cryogenic Operation for Low Temperature Electronics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3318-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3318-1_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-4898-4

  • Online ISBN: 978-1-4757-3318-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics