Skip to main content

Abstract

Out of many problems to be resolved and improved in modern power systems, the economy and reliability of power systems are the two main categories. Reliability consists of two different aspects. One is how to choose the ways of connection of power plants, substations, and power networks to minimize the probability of occurrence of such accidents that lead to power cut. Problems pertaining to this aspect can be called the static or structural reliability of power systems. The other is the stability of power systems, that is, the ability of power systems to keep in synchronization among the generators under small or large disturbances. Problems in this aspect can be called the dynamic reliability or dynamic security of power systems [25, 54].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. A. Fouad and Vijay Vittal, Power System Transient Stability Analysis Using the Transient Energy Function Method. Prentice -Hall, 1992

    Google Scholar 

  2. A. Isidori, “H∞ Control via Measurement Feedback for Affine Nonlinear Systems”, International Journal of Robust and Nonlinear Control, Vol.4, pp. 553–574, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  3. A. Isidori, Nonlinear Control Systems: An Introduction (3rd Edition), Springer-Verlag, New York, 1995.

    MATH  Google Scholar 

  4. A. Isidori and A. Astolfi, “Disturbance Attenuation and H∞ Control via Measurement Feedback in Nonlinear Systems”, IEEE Trans. AC, Vol. 37, No. 10, pp. 1283–1293, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  5. A. K. Bejczy, T. J. Tarn and Y. L. Chen, “Robot Arm Dynamic Control by Computer”, IEEE Int. Conf. Robotics and Ant., St. Louis, 1985.

    Google Scholar 

  6. B. Jakubczyk and W. Respondek, “On Linearization of Control Systems”, Bull. Acad. Polon. Sei., Math., 1980.

    Google Scholar 

  7. C. A. King, J. W. Chapman and M. D. Ilic, “Feedback Linearizing Excitation Controller on a Full-scale Power System Model”, IEEE Trans. PWRS, Vol. 9, pp. 1102–1109, 1994

    Google Scholar 

  8. D. Cheng, T. J. Tarn and A. Isidori, “Global Linearization of Nonlinear Systems Via Feedback”, IEEE Trans. AC, Vol. 30, No. 8, pp. 808–811, 1985.

    Article  MathSciNet  MATH  Google Scholar 

  9. D. P. Atherton, Stability of Nonlinear Systems, John Wiley, NewYork, 1981.

    MATH  Google Scholar 

  10. F. P. Demello and C. Concordia, “Concepts of Synchronous Machine Stability as Affected by Excitation Control”, IEEE Trans. Power Appar. Syst., pp. 316–329, April, 1969.

    Google Scholar 

  11. F. W. Warner, Foundations of Differential Manifolds and Its Lie Groups, Scott, Foresman, Glenview, 1970.

    Google Scholar 

  12. G. Meyer, L. R. Hunt and R. Su, “Design of a Helicopter Autopilot by Means of Linearizing Transformations”, Guidance and Control Panel 35th Symposium, Lisbon, Portugel (AGARD Conf. Proc. No. 321), 1983.

    Google Scholar 

  13. G. Meyer, R. Su and L. R. Hunt, “Application of Nonlinear Transformation to Automatic Flight Control”, Automatic, Vol. 20, No.1, 1984.

    Google Scholar 

  14. H. D. Chiang, M. W. Hirsch and F. F. Wu, “Stability Regions of Nonlinear Autonomous Dynamical Systems”, IEEE Trans. AC, Vol. 33, No. 1, pp. 16–27, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  15. H. J. Sussmann, “Lie bracket, real analyticity and geometric control”, in Geometric theory of nonlinear control systems, Birkhauser, Boston, pp. 1–116, 1983.

    Google Scholar 

  16. H. Kwakernak and R. Sivan, Linear Optimal Control Systems, Wiley, New York, 1972.

    Google Scholar 

  17. H. Nijmeijer and A. J. van der Schaft, Nonlinear Dynamic Control Systems, Springer-Verlag, New York, 1990.

    Book  Google Scholar 

  18. H. S. Tsien, Engineering Cybernetics, New York, McGraw-Hill Book Company, Inc., 1958.

    Google Scholar 

  19. I. M. Mareeis and D. J. Hill, “Monotone Stability of Nonlinear Feedback Systems”, Journal of Mathematical Systems, Estimation, and Control,. Vol. 2, No. 3, pp. 275–291, 1992.

    MathSciNet  Google Scholar 

  20. J. H. Anderson, “The Control of A Synchronous Machine Using Optimal Control Theory”, Proc. IEEE 90, pp. 25–35, 1971

    Article  Google Scholar 

  21. J. Hammer, “Nonlinear Systems, Stabilization, and Coprimeness”, Int. J. Contr. Vol.42, pp. 1–20, 1985.

    Article  MathSciNet  MATH  Google Scholar 

  22. J. M. Coron, “Linearized Control Systems and Applications to Smooth Stabilization”, SIAM J. Control Optim. Vol. 32, pp. 358–386,1994.

    Article  MathSciNet  MATH  Google Scholar 

  23. J. Wang, W. J. Rugh, “Feedback Linearization Families for Nonlinear Systems”, IEEE Trans. AC, Vol. 32, pp.935–940, 1987.

    Article  MATH  Google Scholar 

  24. J. Zaborszky, G. Huang, B. Zheng and T. C. Leung, “On the Phase Portrait of a Class of Large Nonlinear Dynamic Systems Such As the Power System”, IEEE Trans. AC, Vol. 33, No. l,pp.4–15, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  25. M. A. Pai, Power System Stability, New York: North Holland, 1981.

    MATH  Google Scholar 

  26. M. Klein, G. J. Rogers, S. Moorty, and P. Kundur. “Analytical Investigation of Factors Influencing Power System Stabilizer Performance”, IEEE EC, Vol. 7, pp.382–388, 1992.

    Google Scholar 

  27. M. Spivk, A Comprehensive Introduction to Differential Geometry, Vol. I, Publish or Peremish, Boston, 1970.

    Google Scholar 

  28. M. Vidyasagar, Nonlinear Systems Analysis, Englewood Cliffs, NJ: Prentice-Hall, 1978.

    Google Scholar 

  29. M. Zribi, J. Chiasson, “Exact Linearization Control of a PM Stepper Motor”, Proc. American Control Conference, Pittsburgh, 1989.

    Google Scholar 

  30. N. Kalouptsidis and J. Tsinias, “Stability Improvement of Nonlinear Systems by Feedback”, IEEE Trans. AC, Vol. 29, pp. 364–367, 1984.

    Article  MathSciNet  MATH  Google Scholar 

  31. P. Kunder, Power System Stability and Control, McGraw-Hill, Inc. 1994.

    Google Scholar 

  32. P. M Anderson, and A. A. Fouad, Power System Control and Stability, IEEE Press, New York, 1994.

    Google Scholar 

  33. Q. Lu, and Y. Sun, “Nonlinear Stabilizing Control of Multimachine Systems”, IEEE Trans. PES, Vol. 4, No.1, pp. 236–241, 1989.

    Google Scholar 

  34. Q. Lu, S. Mei, T. Shen and W. Hu, “Recursive Design of Nonlinear Hx Excitation Controller”, Science in China(series E), Vol. 43, No. 1, pp23–31, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  35. Q. Lu, S. Mei, W. Hu and Y. H. Song, “Decentralized Nonlinear H∞ Excitation Control Based on Regulation Linearization”, IEE Proc-Gener. Transm. Distrib., Vol 147, No. 4, pp245–251,2000.

    Article  Google Scholar 

  36. Q. Lu, Y. Sun and Gordon K.F. Lee, “Nonlinear Optimal Excitation Control For Multimachine Systems”, IFAC Symposium on Power System Modeling and Control Application, Brussels, Sept., 1988.

    Google Scholar 

  37. Q. Lu, Y. Sun, Z. Xu and Y. Mochizuki, “Decentralized Nonlinear Optimal Excitation Control”. IEEE Trans. PWRS, Vol. 11, No. 4, pp. 1957–1962, 1996.

    Google Scholar 

  38. R. Bellman, Dynamic Programming, Princeton University Press, Princeton, 1957.

    MATH  Google Scholar 

  39. R. Bellman, Introduction to Matrix Analysis, McGraw-Hill Book Company, New York, 1960.

    MATH  Google Scholar 

  40. R. E. Kaiman, “Mathematical Description of Linear Dynamical Systems”, J. SIAM Control. Ser. A, Vol. 1, pp. 152–192, 1963.

    MathSciNet  Google Scholar 

  41. R. Marino, “On the Largest Feedback Linearizable Subsystem”, System & Control Letters, Vol. 6, pp.345–351, 1986.

    Article  MATH  Google Scholar 

  42. R. Marino, W. M. Boothby, D. L. Elliott, “Geometric Properties of Linearizable Control Systems”, Math. Systems Theory, Vol. 18, pp. 97–123, 1985.

    Article  MathSciNet  MATH  Google Scholar 

  43. R. Su, “On the Linear Equivalence of Nonlinear Systems”, System & Control Letters, Vol. 2, pp.48–52, 1982.

    Article  MATH  Google Scholar 

  44. R. W. Brockett, “Nonlinear Systems and Differential Geometry”, Proc. IEEE, Vol. 64, No.1, 1976.

    Google Scholar 

  45. S. P. Banks, Mathematical Theories of Nonlinear Systems, Prentice Hall, Hertfordshire, 1988.

    MATH  Google Scholar 

  46. T. Basar, “Disturbance Attenuation in LTI Plants with Finite Horizon: Optimality of Nonlinear Controllers”, Systems & Control Letters, Vol. 13, pp.183–191, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  47. T. J. Tarn, A K Bejczy, A Isidori and Y L Chen, “Nonlinear Feedback in Robot Arm Control”, Proc. 23rd IEEE Conf. Dec. Contr., Las Vegas, 1984.

    Google Scholar 

  48. Van Schaft, “L2-Gain Analysis of Nonlinear Systems and Nonlinear State Feedback Hx Control”, IEEE Trans. AC, Vol. 33, No. 6, pp.770–784, 1992.

    Article  Google Scholar 

  49. W. A. Boothby, An Introduction to Differential Manifold and Riemannian Geometry, Academic, New York, 1975.

    Google Scholar 

  50. W. Kang, “Nonlinear H∞ Control and Its Applications to Rigid Spacecraft”, IEEE Trans. AC, Vol. 40, pp. 1281–1285, 1998.

    Article  Google Scholar 

  51. W. Mielczarski and A. Zajaczkowski, “Nonlinear Field Voltage Control of a Synchronous Generator Using Feedback Linearization”, Automatica Vol. 30, pp. 1625–1630, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  52. W. Respondek, “Linearization, feedback and Lie Brackets”, in Geometric theory of nonlinear control systems, Technical University of Wroclaw, Poland, pp.131–166, 1985.

    Google Scholar 

  53. W. Respondek, Geometric Methods in Linearization Nonlinear Systems in Mathematical Control Theory, Banach Center Publications, Polish Scientific Publishers, Warsaw, pp. 453–467, 1985.

    Google Scholar 

  54. Y. N. Yu, Electric Power System Dynamics, Academic Press, 1983.

    Google Scholar 

  55. Y. N. Yu, K. Vongsuriya and L. N. Wedman, “Application of an optimal Control Theory to a Power System”, IEEE Trans. Power Appar. Syst., pp. 55–62, Jan., 1970.

    Google Scholar 

  56. Y. Sun, Q. Lu and J. Gao, “A New Nonlinear Modulation Control for HVDC Power Transmission Systems”, CSEE/IEEE International Conference on Power System Technology, Beijing, Sept., 1991.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lu, Q., Sun, Y., Mei, S. (2001). Introduction. In: Nonlinear Control Systems and Power System Dynamics. The Springer International Series on Asian Studies in Computer and Information Science, vol 10. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3312-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3312-9_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-4885-4

  • Online ISBN: 978-1-4757-3312-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics