Skip to main content

Part of the book series: Nonconvex Optimization and Its Applications ((NOIA,volume 52))

  • 490 Accesses

Abstract

In this introductory chapter, we consider the concept on differentiability of mappings in Banach spaces, Fréchet and Gâteaux derivatives, secondorder derivatives and general minimization theorems. Variational principles of Ekeland [Ek1] and Borwein & Preiss [BP] are proved and relations to the minimization problem are given. Deformation lemmata, Palais—Smale conditions and mountain-pass theorems are considered. The deformation approach and ε—variational approach are applied to prove the mountainpass theorem and its various extensions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Ambrosetti, Antonio and Prodi, Giovanni. A Primer of Nonlinear Analysis. Cambridge Univ. Press, 1994.

    Google Scholar 

  2. Ambrosetti A, Rabinowitz P. Dual variational methods in critical point theory and applications. J. Funct. Anal., 1973;14:349–381.

    Article  MathSciNet  MATH  Google Scholar 

  3. Aubin, Jean-Pierre and Ekeland, Ivar. Applied Nonlinear Analysis. N.Y.: John Wiley & Sons, 1984.

    MATH  Google Scholar 

  4. Bartolo P, Benci V, Fortunato D. Abstract critical point theory and applications to some nonlinear problems with “strong” resonance at infinity. Nonlinear Anal. T.M.A., 1983;7,9:981–1012.

    Article  MathSciNet  Google Scholar 

  5. Berger, Melvin. Nonlinearity and Functional Analiysis. N.Y.: Academic Press, 1977.

    MATH  Google Scholar 

  6. Borwein J, Preiss D. A smooth variational principle with applications to subdifferentiability and to differentiability of convex functions. Trans. A.M.S., 1987;303:517–527.

    Article  MathSciNet  MATH  Google Scholar 

  7. Brezis H, Coron JM, Nirenberg L. Free vibrations for a nonlinear wave equation and a theorem of P. Rabinowitz. Comm. Pure and Appl. Math., 1980;33:667–689.

    Article  MathSciNet  MATH  Google Scholar 

  8. Brezis H, Nirenberg L. Remarks on finding critical points. Comm. Pure and Appl. Math., 1991;XLIV:939–963.

    Article  MathSciNet  Google Scholar 

  9. Cartan, Henri. Calcul différentiel, Formes différentielles. Paris: Hermann,1967.

    Google Scholar 

  10. Cerami G. Un criterio di esistenza per punti critici su varieta illimate. Rend. Acad. Sci. Let. Ist. Lombardo 1978;112:332–336.

    MathSciNet  MATH  Google Scholar 

  11. Chang, Kung. Infinite Dimensional Morse Theory and Multiple Solution Problems. Boston, Basel, Berlin: Birkhäuser, 1993.

    Book  MATH  Google Scholar 

  12. Cohn Donald. Measure Theory, Birkhäser, 1980.

    MATH  Google Scholar 

  13. Degiovanni M, Marzocchi M. A critical point theory for nonsmooth functionals. Ann. Matem. Pura ed Appl. 1994;IV, CLXVII:73–100.

    Article  MathSciNet  Google Scholar 

  14. Ekeland I. Nonconvex minimization problems. Bull. Amer. Math. Soc. (NS), 1979;1:443–474.

    Article  MathSciNet  MATH  Google Scholar 

  15. Ekeland, Ivar. Convexiy Methods in Hamiltoniam Mechanics. N.Y.: Springer-Verlag, 1990.

    Book  Google Scholar 

  16. Fang G, Ghoussoub N. Second-order information on Palais—Smale sequences in the mountain-pass theorem. Manuscr. Mathem., 1992.

    Google Scholar 

  17. Figueredo DG. Lectures on the Ekeland variational principle with applications and detours. Preliminary Lecture Notes, SISSA, 1988.

    Google Scholar 

  18. Figueredo DG, Solimini S. A variational approach to superlinear elliptic problems. Comm. Partial Differential Equations, 1984;9:699–717.

    Article  MathSciNet  Google Scholar 

  19. Ghossoub N. Location, Multiplicity and Morse indices of min-max critical points. J. Reine Angew. Math., 1991;417:27–76.

    MathSciNet  Google Scholar 

  20. Ghossoub N. Duality and perturbation methods in critical point theory. Cambridge University Press, 1994.

    Google Scholar 

  21. Ghossoub N, Preiss D. A general mountain pass principle for locating and classifying critical points. Ann. Inst. Henry Poincaré, 1989;6,5:321–330.

    Google Scholar 

  22. Guo D, Sun J, Qi G. Some extensions of the mountain-pass lemma. Diff. Int. Eq., 1988;1,3:351–358.

    MathSciNet  Google Scholar 

  23. Hofer H. Variational and topological methods in partially ordered Hilbert spaces. Math. Ann., 1982;261:493–514.

    Article  MathSciNet  MATH  Google Scholar 

  24. The topological degree at a critical point of mountain pass type. Proc. Symp. Pure Math. I, AMS, 1986;501–509.

    Google Scholar 

  25. Kolmogorov A, Fomin V. Elements of the Functional Analysis and Measure Theory. Moskow: Nauka, 1976 (in Russian).

    MATH  Google Scholar 

  26. Lusternik L, Schnirelman L. Methodes Topologiques dans lesProblemes Variationels. Paris: Gautheir-Vilar, 1934.

    MATH  Google Scholar 

  27. Mawhin, Jean. Points Fixes, Points Critiques et Problemes aux Limites. Semin. Math. Sup. N 92, Montreal: Presses Univ.Montreal, 1985.

    MATH  Google Scholar 

  28. Mawhin J. Critical point theory and nonlinear differential equations. in Equadiff 6, Brno 1985, Lect. Notes in Math. N 1192, Springer Verlag, Berlin, 1986, 49–58.

    Google Scholar 

  29. Mawhin J, Willem M. Multiple solutions of the periodic boundary value problems for some forced pendulum type equations. J. Diff. Eq., 1984;52:264–287.

    Article  MathSciNet  MATH  Google Scholar 

  30. Mawhin, Jean and Willem, Michael. Critical Point Theory and Hamiltonian Systems. N.Y.: Springer-Verlag, 1988.

    Google Scholar 

  31. Palais RS. Critical point theory and the minimax principle. Proc. Sympos. Pure Math. vol.15, Amer. Math. Soc. Providence, R.I., 1970,185–212.

    Article  MathSciNet  Google Scholar 

  32. Pucci P, Serrin J. Extensions of the montain-pass lemma. J. Functional Anal., 1984;59:185–210.

    Article  MathSciNet  MATH  Google Scholar 

  33. Pucci P, Serrin J. A montain-pass lemma. J. Diff. Eq., 1985;60:142–149.

    Article  MathSciNet  MATH  Google Scholar 

  34. Rabinowitz P. A note on nonlinear eigenvalue problems for a class of differential equations. J. Diff. Eq., 1971;9:536–548.

    Article  MathSciNet  MATH  Google Scholar 

  35. Rabinowitz P. The mountain-pass theorem: Theme and variations. Lecture Notes in Math., N 957, N.Y.: Springer-Verlag, 1982;237–269.

    Google Scholar 

  36. Rabinowitz P. Minimax methods in Critical Point Theory and Applications to Differential Equations. CBMS Reg. Conf. 65, AMS, Providence, R.I., 1986.

    Google Scholar 

  37. Ramos, Miguel. Teoremas de Enlace na Teoria dos Pontos Críticos. Universidade de Lisboa, Faculdade de Ciências, 1993.

    MATH  Google Scholar 

  38. Ribarska N., Tsachev T. and Krstanov M., The intrisic mountain pass principle. C. R. Acad. Sci. Paris, t. 329, Ser. I, 1999; 399–404.

    Article  Google Scholar 

  39. Sanchez L. Métodos da Teoria de Pontos Criticos. Universidade de Lisboa, Faculdade de Ciências, 1993.

    Google Scholar 

  40. Schechter M. A bounded Mountain Pass Lemma without the (PS) condition. Trans. AMS, 1992;331:681–703.

    Article  MathSciNet  MATH  Google Scholar 

  41. Schechter M. A variation of the Mountain Pass Theorem and applications. J. London Math. Soc., 1991;44:491–502.

    Article  MathSciNet  MATH  Google Scholar 

  42. Struwe M. Multiple solutions of differential equations without the Palais-Smale condition. Math. Anal., 1982;261:399–412.

    Article  MathSciNet  MATH  Google Scholar 

  43. Struwe M. Generalized Palais-Smale condition and applications, Universität Bonn, preprint N 17, 1983.

    Google Scholar 

  44. Struwe, Michael. Variational Methods. N.Y.: Springer Verlag, 1990.

    Book  MATH  Google Scholar 

  45. Vainberg, Morduchai. Variational Methods for the Study of Nonlinear Operators. San Francisco: Holden-Day, 1984.

    Google Scholar 

  46. Willem M. Lecture notes on critical point theory, Fundaçâo Universidade de Brasília, 199, 1983.

    Google Scholar 

  47. Willem, Michael. Minimax Theorems. Basel: Birkhäser, 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

do Rosário Grossinho, M., Tersian, S.A. (2001). Minimization and Mountain-Pass Theorems. In: An Introduction to Minimax Theorems and Their Applications to Differential Equations. Nonconvex Optimization and Its Applications, vol 52. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3308-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3308-2_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-4849-6

  • Online ISBN: 978-1-4757-3308-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics