Skip to main content

Quantum Chemical Reactivity: Beyond the Study of Small Molecules

  • Chapter

Part of the book series: Mathematical and Computational Chemistry ((MACC))

Abstract

It is well known the paramount importance attached to the quantum mechanical methods related to the transition states (TS) or minimal energy surfaces localisation. In this field, many efforts are done to apply such techniques to medium, and large, sized molecules. The main goal is to obtain molecular descriptions of such systems within the highest possible level of accuracy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. M. Anglada, E. Besalû, J. M. Bofill, and R. Crehuet, J. Comput. Chem. 20, 1112 (1999).

    Article  CAS  Google Scholar 

  2. L. Salem, Electrons in Chemical Reactions: First Principles, Wiley, New York (1982).

    Google Scholar 

  3. M. G. Evans and E. Warhurst, Trans. Faraday Soc. 34, 614 (1938).

    Article  CAS  Google Scholar 

  4. M. G. Evans, Trans. Faraday Soc. 35, 824 (1939).

    Article  CAS  Google Scholar 

  5. F. Bernardi, M. A. Robb, H. B. Schlegel, and G. Tonachini, J. Am. Chem. Soc. 106, 1198 (1984).

    Article  CAS  Google Scholar 

  6. F. Bernardi, M. Olivucci, M. A. Robb, and G. Tonachini, J. Am. Chem. Soc, 108, 1408 (1986).

    Article  CAS  Google Scholar 

  7. F. Bernardi, M. Olivucci, J. J. W. McDouall, and M. A. Robb, J. Am. Chem. Soc. 109, 544 (1987).

    Article  CAS  Google Scholar 

  8. F. Bernardi and M. A. Robb, Adv. Chem. Phys. 67, 155 (1987).

    Article  CAS  Google Scholar 

  9. J. J. W. McDouall, M. A. Robb, and F. Bernardi, Chem. Phys. Lett. 129, 595 (1986).

    Article  CAS  Google Scholar 

  10. F. Bernardi, J. J. W. McDouall, and M. A. Robb, J. Comput. Chem. 8, 296 (1987).

    Article  CAS  Google Scholar 

  11. F. Jensen, J. Am. Chem. Soc. 114, 1596 (1992).

    Article  CAS  Google Scholar 

  12. F. Jensen, J. Comput. Chem. 15, 1199 (1994).

    Article  CAS  Google Scholar 

  13. K. Ruedenberg and J.-Q. Sun, J. Chem. Phys. 101, 2168 (1994).

    Article  CAS  Google Scholar 

  14. A. Pross and S. S. Shaik, Tetrahedron Lett. 23, 5467 (1982).

    CAS  Google Scholar 

  15. A. Pross and S. S. Shaik, Acc. Chem. Res. 16, 363 (1983).

    Article  CAS  Google Scholar 

  16. S. S. Shaik, Prog. Phys. Org. Chem. 15, 197 (1985).

    Article  CAS  Google Scholar 

  17. A. Pross, Adv. Org. Chem. 21, 99 (1985).

    CAS  Google Scholar 

  18. S. S. Shaik, Pure Appl. Chem. 63, 193 (1991).

    Article  Google Scholar 

  19. S. S. Shaik, H. B. Schlegel, and S. Wolfe, Theoretical Aspects of Physical Organic Chemistry. The S N 2 Mechanism, Wiley, New York (1992).

    Google Scholar 

  20. A. Warshel and R. M. Weiss, J. Am. Chem. Soc. 102, 6218 (1980).

    Article  CAS  Google Scholar 

  21. A. Warshel, Biochemistry 20, 3167 (1981).

    Article  CAS  Google Scholar 

  22. A. Warshel, Acc. Chem. Res. 14, 284 (1981).

    Article  CAS  Google Scholar 

  23. J.-K. Hwang, G. King, S. Creighton, and A. Warshel, J. Am. Chem. Soc. 110, 5297 (1988).

    Article  CAS  Google Scholar 

  24. J. Aqvist and A. Warshel, Biochemistry 28, 4680 (1989).

    Article  CAS  Google Scholar 

  25. A. Warshel, Computer Modeling of Chemical Reactions in Enzymes and Solutions, John Wiley, New York (1991).

    Google Scholar 

  26. J. Aqvist and A. Warshel, Chem. Rev. 93, 2523 (1993).

    Article  Google Scholar 

  27. H. J. Kim and J. T. Hynes, J. Am. Chem. Soc. 114, 10508 (1992).

    Article  CAS  Google Scholar 

  28. P.-O. Löwdin, J. Math. Phys. 3, 969 (1962).

    Article  Google Scholar 

  29. P.-O. Löwdin, J. Math. Phys. 3, 1171 (1962).

    Article  Google Scholar 

  30. Y.-T. Chang and W. H. Miller, J. Phys. Chem. 94, 5884 (1990).

    Article  CAS  Google Scholar 

  31. J. M. Anglada, E. Besalú, J. M. Bofill, and R. Crehuet, J. Comput. Chem. 20, 1130 (1999).

    Article  CAS  Google Scholar 

  32. B. J. Cerjan and W. H. Miller, J. Chem. Phys. 75, 2800 (1981).

    Article  CAS  Google Scholar 

  33. J. Simons, P. Jørgensen, H. Taylor, and J. Ozment, J. Phys. Chem. 87, 2745 (1983).

    Article  CAS  Google Scholar 

  34. C. O’Neal, H. Taylor, and J. Simons, J. Phys. Chem. 88, 1510 (1984).

    Article  Google Scholar 

  35. A. Banerjee, N. Adams, J. Simons, and R. Shepard, J. Phys. Chem. 89, 52 (1985).

    Article  CAS  Google Scholar 

  36. H. Taylor and J. Simons, J. Phys. Chem. 89, 684 (1985).

    Article  CAS  Google Scholar 

  37. J. Baker, J. Comput. Chem. 7, 385 (1986).

    Article  CAS  Google Scholar 

  38. J. Nichols, H. Taylor, P. Schmidt, and J. Simons, J. Chem. Phys. 92, 340 (1990).

    Article  CAS  Google Scholar 

  39. T. Helgaker, Chem. Phys. Lett. 182, 503 (1991).

    Article  CAS  Google Scholar 

  40. P. Culot, G. Dive, V. H. Nguyen, and J. M. Ghuysen, Theor. Chim. Acta 82, 189 (1992).

    Article  CAS  Google Scholar 

  41. J. M. Anglada and J. M. Bofill, lnr J. Quantum Chem. 62, 153 (1997).

    Article  CAS  Google Scholar 

  42. D. Besalú and J. M. Bofill, Theor. Chem. Acc.100, 265 (1998).

    Article  Google Scholar 

  43. H. B. Schlegel, Adv. Chem. Phys. 67, 249 (1987).

    Article  CAS  Google Scholar 

  44. H. B. Schlegel, in Modern Electronic Structure Theory, D. R. Yarkony (ed.), World Scientific, Singapore (1995).

    Google Scholar 

  45. J. M. Anglada, E. Besalú, J. M. Bofill, and J. Rubio, J. Math. Chem. 25, 85 (1999).

    Article  CAS  Google Scholar 

  46. E. Besalú and R. Carbó-Dorca, J. Math. Chem. 21, 395 (1997).

    Article  Google Scholar 

  47. F. Besalú and J. M. Bofill, J. Comput. Chem. 19, 1777 (1998).

    Article  Google Scholar 

  48. J. M. Anglada, E. Besalú, and J. M. Bofill, Theor. Chem. Acc. 103, 163 (1999).

    Article  CAS  Google Scholar 

  49. M. A. Robb, personal comunication.

    Google Scholar 

  50. P. A. M. Dirac, The Principles of Quantum Mechanics, Claredon Press, Oxford (1958).

    Google Scholar 

  51. E. J. Heller, J. Chem. Phys. 62, 1544 (1975).

    Article  CAS  Google Scholar 

  52. D. Neuhauser, J. Chem. Phys. 93, 2611 (1990).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bofill, J.M., Anglada, J.M., Besalú, E., Crehuet, R. (2001). Quantum Chemical Reactivity: Beyond the Study of Small Molecules. In: Carbó-Dorca, R., Gironés, X., Mezey, P.G. (eds) Fundamentals of Molecular Similarity. Mathematical and Computational Chemistry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3273-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3273-3_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3344-7

  • Online ISBN: 978-1-4757-3273-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics