Skip to main content
  • 362 Accesses

Abstract

This chapter introduces the first major bacterial genetic transfer process to be discovered—genetic transformation. Initially, the mechanism appears to be improbable. Donor cells release large DNA fragments (as heavy as several million daltons), and the fragments diffuse through the culture medium to recipient cells. They are then transported across the cell wall and cell membrane into the cytoplasm where recombination occurs. The process is distinct from another biologic phenomenon also denoted transformation, the conversion of normal mammalian cells into tumor cells. To emphasize this difference, in this book the bacterial process is always described as genetic transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

General

  • Dubnau, D. (1991). Genetic competence in Bacillus subtilis. Microbiological Reviews 55: 395–424. (Includes some information on other systems.)

    PubMed  CAS  Google Scholar 

  • McCarty, M. (1985). The Transforming Principle: Discovering That Genes Are Made of DNA. New York: Norton. (Scientific history written by one of the participants.)

    Google Scholar 

  • Moszer, I. (1998). The complete genome of Bacillus subtilis: From sequence annotation to data management and analysis. FEBS Letters 430: 28–36.

    Article  PubMed  CAS  Google Scholar 

  • Piggott, P.J., Hoch, J.A. (1985). Revised genetic linkage map of Bacillus subtilis. Microbiological Reviews 49: 158–179.

    Google Scholar 

  • Stewart, G.J., Carlson, C.A. (1986). The biology of natural transformation. Annual Review of Microbiology 40: 211–235.

    Article  PubMed  CAS  Google Scholar 

Specialized

  • Barouki, R., Smith, H.O. (1986). Initial steps in Haemophilus influenzae transformation: Donor DNA binding in the com1a mutant. Journal of Biological Chemistry 261: 8617–8623.

    PubMed  CAS  Google Scholar 

  • Campbell, E.A., Choi, S.Y., Masure, H.R. (1998). A competence regulon in Streptococcus pneumoniae revealed by genomic analysis. Molecular Microbiology 27: 929–939.

    Article  PubMed  CAS  Google Scholar 

  • Chandler, M.S. (1992). The gene encoding cAMP receptor protein is required for competence development in Haemophilus influenzae. Proceedings of the National Academy of Sciences of the USA 89: 1626–1630.

    Article  PubMed  CAS  Google Scholar 

  • Chung, Y.S., Dubnau, D. (1998). All seven comG open reading frames are required for DNA binding during transformation of competent Bacillus subtilis. Journal of Bacteriology180: 41–45.

    CAS  Google Scholar 

  • Hanahan, D. (1983). Studies on transformation of Escherichia coli with plasmids. Journal of _Molecular Biology 166: 557–580.

    Article  PubMed  CAS  Google Scholar 

  • Hui, F M., Morrison, D.A. (1991). Genetic transformation in Streptococcus pneumoniae: nucleotide sequence analysis shows comA, a gene required for competence induction, to be a member of the bacterial ATP-dependent transport protein family. Journal of Bacteriology173: 372–381.

    PubMed  CAS  Google Scholar 

  • Lefrancois, J., Samrakandi, M.M., Sicard, A.M. (1998). Electrotransformation and natural transformation of Streptococcus pneuroniae: Requirement of DNA processing for recombination. Microbiology 144: 3061–3068.

    Article  PubMed  CAS  Google Scholar 

  • Lui, J., Zuber, P. (1998). A molecular switch controlling competence and motility: Competence regulatory factors comS, recA, and comK control Q°-dependent gene expression in Bacillus subtilis. Journal of Bacteriology 180: 4243–4251.

    Google Scholar 

  • Masure, H.R., Pearce, B.J., Shio, H., Spellerberg, B. (1998). Membrane targeting of RecA during genetic transformation. Molecular Microbiology 27: 845–852.

    Article  PubMed  CAS  Google Scholar 

  • Mongold, J.A. (1992). DNA repair and the evolution of transformation in Haemophilus influenzae. Genetics 132: 893–898. (Evidence that transforming DNA does not serve as a template for DNA repair.)

    PubMed  CAS  Google Scholar 

  • Redfield, R.J. (1993). Evolution of natural transformation: testing the DNA repair hypothesis in Bacillus subtilis and Haemophilus influenzae. Genetics 133: 755–762.

    PubMed  CAS  Google Scholar 

  • Reusch, R.N. (1992). Biological complexes of poly-β-hydroxybutyrate. FEMS Microbiology Reviews 103: 119–130. (A biophysical discussion of possible functions of poly—β-hydroxybutyric acid.)

    CAS  Google Scholar 

  • Sikorski, J., Graupner, S., Lorenz, M.G., Wackernagel, W. (1998). Natural genetic transformation of Pseudomonas stutzeri in a nonsterile soil. Microbiology 144: 569–576.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Birge, E.A. (2000). Genetic Transformation. In: Bacterial and Bacteriophage Genetics. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-3258-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3258-0_10

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-3260-3

  • Online ISBN: 978-1-4757-3258-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics