Skip to main content

Cell Division Cycle Alterations and Human Tumors

  • Chapter
Book cover Advances in Nutrition and Cancer 2

Abstract

A large series of evidence has conclusively demonstrated that the development and progression of a cancer are due to the accumulation of a number of genetic alterations which finally result in a full malignant phenotype. This complex phenomenon is clearly illustrated by colorectal tumors, which often require more than a decade to be clinically evident and at least seven genetic events for completion.1

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kinzler, K.W. and Vogelstein, B. Lessons from hereditary colorectal cancer. Cell, 87, 159–170, 1996.

    Article  PubMed  CAS  Google Scholar 

  2. Modrich, P. and Lahue, R. Mismatch repair in repliation fidelity, genomic recombination, and cancer biology. Ann. Rev. Biochem., 65, 101–133, 1996.

    Article  PubMed  CAS  Google Scholar 

  3. Prolla T. DNA mismatch repair and cancer. Curr. Opinion in Cell Biol., 10, 311–316, 1998.

    Article  Google Scholar 

  4. Davis, T.W., Wilson-Van Patten, C., Meyers, M., Kunugi, K.A., Cuthil, S., Reznikoff, C., Garces, C., Boland, C.R., Kinsella, T.J., Fishel, R., and Boothma, D.A. Defective expression of the DNA mismatch repair protein, MLH1 alters G2-M cell cycle checkpoint arrest following ionizing radiation. Cancer Res., 58, 767–778, 1998.

    PubMed  CAS  Google Scholar 

  5. Nicolaides, N.C., Littman, S.J.P., Kinzler, K.W., and Vogelstein, B. A naturally occurring hPMS2 mutation can confer a dominant negative mutator phenotype. Mol. Cell. Biol., 18, 1635–1641, 1998.

    PubMed  CAS  Google Scholar 

  6. Lane, D. Awakening angels. Nature, 394, 616–617, 1998.

    Article  PubMed  CAS  Google Scholar 

  7. Woo, R.A., McLure, K.G., Lees-Miller, S.P., and Lee, P. DNA-dependent protein kinase acts upstream of p53 in response to DNA damage. Nature, 394, 700–704, 1998.

    Article  PubMed  CAS  Google Scholar 

  8. Pardee, A.B. Gl events and regulation of cell proliferation. Science, 246, 603–608, 1989.

    Article  PubMed  CAS  Google Scholar 

  9. Nurse P. Ordering S phase and M phase in the cell cycle. Cell, 79, 547–550, 1994.

    Article  PubMed  CAS  Google Scholar 

  10. Sherr, C.J. G1 phase progression: cycling on cue. Cell, 79, 551–555, 1994.

    Article  PubMed  CAS  Google Scholar 

  11. Xiong, Y., Hannon, G.J., Zhang, H., Casso, D., Kobayashi, R., and Beach, D. p21 is a universal inhibitor of cyclin kinases. Nature, 366, 701–704, 1993.

    Article  PubMed  CAS  Google Scholar 

  12. Toyoshima, H. and Hunter, T. p27, a novel inhibitor of G1 cyclin-Cdk protein kinase activity, is related to p21. Cell, 78, 67–74, 1994.

    Article  PubMed  CAS  Google Scholar 

  13. Lee, M.-H., Reynisdottir, I., and Massagué, J. Cloning of p57, a cyclin-dependent kinase inhibitor with unique domain structure and tissue distribution. Genes and Dev., 9, 639–649, 1995.

    Article  PubMed  CAS  Google Scholar 

  14. Serrano, M., Hannon, G.J., and Beach, D. A new regulatory motif in cell cycle control causing specific inhibition of cyclin D/CDK4. Nature, 266, 122–126, 1993.

    Google Scholar 

  15. Hannon, G.J. and Beach, D. p15NK4B is a potential effector of TGF-13-induced cell cycle arrest. Nature, 371, 257–260, 1994.

    Article  PubMed  CAS  Google Scholar 

  16. Guan, K.-L., Jenkins, C.W., Li, Y., Nichols, M.A., Wu, X., O’Keefe, C.L., Matera, A.G., and Xiong, Y. Growth suppression by p18, a p161NK4s and p14NK4B/MTS2-related CDK6 inhibitor, correlates with wild-type pRb function. Genes and Dev., 8, 2939–2952, 1994.

    Article  PubMed  CAS  Google Scholar 

  17. Chan, F.K.M., Zhang, J., Cheng, L., Shapiro, D.N., and Winoto, A. Identification of human and mouse p19, a novel CDK4 and CDK6 inhibitor with homology to p161NK4. Mol. Cell. Biol., 15, 2682–2688, 1995.

    PubMed  CAS  Google Scholar 

  18. Steiman, R.A., Hoffman, B., Iro, A., Guillouf, C., Liebermann, D.A., and El-Houssein, M.E. Induction of p21 (WAF-1/CIP1) during differentiation. Oncogene, 9, 3389–3396, 1994.

    Google Scholar 

  19. Nobori, T., Miura, K., Wu, A.K., Luis, K., Takabashi, K., and Carson, D.A. Deletion of the cyclindependent kinase 4 inhibitor gene in multiple human cancers. Nature, 368, 753–756, 1994.

    Article  PubMed  CAS  Google Scholar 

  20. Kamb, A., Gruis, N.A., Weaver-Feldhaus, J., Liu, Q., Harshman, K., Tavitgian, S.V., Stockert, E., Day, R.S., Johnson, B.E., and Skolnick, M.H. A cell cycle regulatory potentially involved in genesis of many tumor types. Science, 264, 436–440, 1994.

    Article  PubMed  CAS  Google Scholar 

  21. Wang, J.Y.J., Knudsen, E.S., and Welch, P.J. The retinoblastoma tumor suppressor protein. Adv. Cancer Res., 64, 25–85, 1994.

    Article  PubMed  CAS  Google Scholar 

  22. Sanchez, I. and Dynlacht, B.D. Transcriptional control of the cell cycle. Curr. Opin. Cell Biol., 8, 318–324, 1996.

    Article  CAS  Google Scholar 

  23. Zarkowska, T., Harlow, E., and Mittnacht, S. Monoclonal antibodies specific for underphosphorylated retinoblastoma protein identify a cell cycle regulated phosphorylation site targeted by CDKs. Oncogene, 14, 249–254, 1997.

    Article  PubMed  CAS  Google Scholar 

  24. Mittnacht, S. Control of pRB phosphorylation. Curr. Opin Gen. Dev., 8, 21–27, 1998.

    Article  Google Scholar 

  25. Nelson, D.A., Krucker, N.A., and Ludlow, J.W. High molecular weight protein phosphatase type 1 dephosphorylates the retinoblstoma protein. J. Biol. Chem., 272, 4528–4535, 1997.

    Article  PubMed  CAS  Google Scholar 

  26. Quelle, D.E., Zindy, E, Ashmun, R.A., and Sherr, C.J. Alternative reading frames of the INK4a tumor suppressor gene encodes two unrelated proteins capable inducing cell cycle arrest. Cell, 83, 993–1000, 1995.

    Article  PubMed  CAS  Google Scholar 

  27. Zhang, Y., Xiong, Y., and Yarbrough, W.G. ARF promotes MDM2 degradation and stabilizes p53: ARF-INK4a locus deletionimpairs both the Rb and p53 tumor suppression pathways. Cell, 92, 725–734, 1998.

    Article  PubMed  CAS  Google Scholar 

  28. Pomerantz, J., Schreiber-Agus, N., Liegeois, N.J., Silverman, A., Alland, L., Chin, L., Potes, J., Chen, K., Orlow, I., Lee, H.W., Cordon-Cardo, C., and DePinho, R.A. The Ink4a tumor suppressor gene product, pl9Arf, interacts with MDM2 and neutralizes MDM2’s inhibition of p53. Cell, 92, 713–723, 1998.

    Article  PubMed  CAS  Google Scholar 

  29. Palmero, I., Pantoja, C., and Serrano, M. p19ARF links the tumour suppressor p53 to Ras. Nature, 395, 125–126, 1998.

    Article  PubMed  CAS  Google Scholar 

  30. Bates, S., Phillips, A.C., Clark, RA., Stott, E, Peters, G., Ludwig, R.L., and Vousden, K.H. p14ARF links the tumour suppressors RB and p53. Nature, 395, 124–125, 1998.

    Article  PubMed  CAS  Google Scholar 

  31. Serrano M., Lee, H.-W., Chin, L., et al. Role of the INK4 locus in tumor suppression and cell mortality. Cell, 85, 27–38, 1996.

    Article  PubMed  CAS  Google Scholar 

  32. Okamoto, A., Demetrick, D.J., Spillare, E.A., Hagiwara, K., Hussain, S.P., Bennett, W.P., Forrester, K., Gerwin B., Serrano, M., Beach, D.H., and Harris C.C. Mutations and altered expression of pl61NK4A in human cancer. Proc. Natl. Acad. Sci. USA, 91, 11045–11049, 1994.

    Article  PubMed  CAS  Google Scholar 

  33. Della Ragione, E, Mercurio, C., and lolascon, A. Cell cycle regulation and human leukemias: the role of p161NK4 gene inactivation in the development of human acute lymphoblastic leukemia. Haematologica, 80, 562–573, 1995.

    Google Scholar 

  34. Loda, M., Cukor, B., Tam, S.W., Lavin, R, Fiorentino, M., Draetta, G.F., Jessup, J.M., and Pagano, M. Increased proteasome-dependent degradation of the cyclin-dependent kinase inhibitor p27 in aggressive coclorectal arcinomas. Nature Medicine, 3, 231, 1997.

    Article  PubMed  CAS  Google Scholar 

  35. Catzavelos, C., Bhattacharya, N., Ung, Y.C., Wilson, J.A., Ronacari, L., Sandhu, C., Yeger, H., MoravaProtzner, I., Kapusta, L., Franssen, E., Pritchard, K.I., and Slingerland, J.M. Decreased levels of the cell-cycle inhibitor p27 protein: prognostic implications in primary breast cancer. Nature Medicine, 3, 227, 1997.

    Article  PubMed  CAS  Google Scholar 

  36. Esposito, V., Baldi, A., De Luca, A., Groger, A.M., Loda, M., Giordano, G.G., Caputi, M., Baldi, E, Pagano, M., and Giordano, A. Prognostic role of the cyclin-dependent kinase inhibitor p27 in non-small cell lung cancer. Cancer Res, 57, 3381, 1997.

    PubMed  CAS  Google Scholar 

  37. Porter, P.L., Malone, K.E., Heagerty, P.J., Alexander, G.M., Gatti, L.A., Firpo, E.J., Daling, J.R., and Roberts, J.M. Expression of cell-cycle regulators p27K1p1 and cyclin E, alone and in combination, correlate with survival in young breast cancer patients. Nature Medicine, 3, 222, 1997.

    Article  PubMed  CAS  Google Scholar 

  38. Tan, R, Cady, B., Wanner, M., Worland, R, Cukor, B., Magi-Galluzzi, C., Lavin, P., Draetta, G., Pagano, M., and Loda, M. The cell cycle inhibitor p27 is an independent prognostic marker in small (Tla,b) invasive breast carcinomas. Cancer Res., 57, 1259, 1997.

    PubMed  CAS  Google Scholar 

  39. Bates, S. and Peters G. Cyclin Dl as a cellular protooncogene. Sem. Cancer Biol., 6, 73–82, 1995.

    CAS  Google Scholar 

  40. Schimdt, E.E., Ichimura, K., Reifenberger, G., and Collins, V.P CDKN2 (p16:MTS1) gene deletion or CDK4 amplification occurs in the majority of glioblastoma. Cancer Res., 54, 6321–6324, 1994.

    Google Scholar 

  41. Miller, A.B. Diet and Cancer: a review. Rev. Oncol., 3, 87–95, 1990.

    Google Scholar 

  42. Adlercreutz, H. Western diet and western diseases: some hormonal and biochemical mechanisms and association. Scand. J. Clin. Lab. Invest., 50, 3–23, 1990.

    Article  Google Scholar 

  43. Rose, D.P., Boyar, A.P., and Wynder, E.I. International comparison of mortality rates for cancer of the breast, ovary, prostate, colon, and per capita fat consumption. Cancer (Phila), 58, 2363–2371, 1986.

    Article  CAS  Google Scholar 

  44. Kolonel, L.N. Variability in diet and its relation to risk in ethnic and migrant groups. Basic Life Sci., 43, 129–135, 1988.

    PubMed  CAS  Google Scholar 

  45. Fotsis, T., Pepper, M., Adlercreutz, H., Fleischmann, G., Hase, T., Montesano, R., and Schweigerer, L. Genistein, a dietary-derived inhibitor of in vivo angiogenesis. Proc. Natl. Acad. Sci. USA, 90, 2690–2694, 1993.

    Article  PubMed  CAS  Google Scholar 

  46. Adlercreutz, H., Honjo, H., Higashi, A., Fotsis, T., Hamalainen, E., Hasegawa, T., and Okada, H. Urinary excretion of lignans and isoflavonoi phytoestrogens in Japanese men and women consuming traditional Japanese diet. Am. J. Clin. Nutr. 53, 1093–1110, 1993.

    Google Scholar 

  47. Chinery, R., Brockman, J.A., Peeler, M.O., Shyr, Y., Beuchamp, R.D., and Offey, R.J. Antioxidants enhance the cytotoxicity of chemotherapeutic agents in colorectal cancer: A p53-independent induction of p21WAFC via C/EBPß. Nature Medicine, 3, 1233–1241, 1997.

    Article  PubMed  CAS  Google Scholar 

  48. Shao, Z.M., Alpaugh, M.L., Fontana, J.A., and Barsky, S.H. Genistein inhibits proliferation in estrogen receptor-positive and negative human breast carcinoma cell lines characterized by p21WAF1/CIP1 induction, G2/M arrest and apoptosis. J. Cell Biochem., 69, 44–54, 1998.

    Article  PubMed  CAS  Google Scholar 

  49. Lian, E, Bhuiyan, M., Li, W.Y., Wall, N., Kraut, M., and Sarkar, F.H. Genistein-induced G2-M arrest, p21WAF1 upregulation, and apoptosis in a non-small-cell lung cancer cell line. Nutr. Cancer, 31, 184–191, 1998.

    Article  PubMed  CAS  Google Scholar 

  50. Markovits, J., Linnassier, C., Fosse, P., Couprie, J., Pierre, J., Jacquemin-Sablon, A., Saucier, J.M., Lepecq, J.B., and Larsen, A.K. Inhibitory effects of the tyrosine kinase inhibitor genistein on mammalian topoisomerase II. Cancer Res., 49, 5111–5119, 1989.

    PubMed  CAS  Google Scholar 

  51. Yuan, Z., Kharbanda, S., and Kufe, D. 141-arabinofuranosylcytosine activates tyrosine phosphorylation of p34cdc2 and its association with the Src-like p56/p53lyn kinase in human myeloid leukemia cells. Biochemistry, 34, 1058–1063, 1995.

    Article  PubMed  CAS  Google Scholar 

  52. Kawada, N., Seki, S., Inoue, M., and Kuroki, T. Effect of antioxidants, resveratrol, quercetin, and Nacetylcysteine, on the functions of cultured rat hepatic stellate cells and Kupffer cells. Hepatology, 27, 1265–1274, 1998.

    Article  PubMed  CAS  Google Scholar 

  53. Carlson, B.A., Bubay, M.M., Sausville, E.A., Brizuela, L., and Worland, P.J. Flavopiridol induces G1 arrest with inhibition of cyclin-dependet kinase (CDK) 2 and CDK4 in human breast carcinoma cells. Cancer Res, 56, 2473–2478, 1996.

    Google Scholar 

  54. Della Ragione, F., Cucciolla, V., Borriello, A., Della Pietra, V., Racioppi, L., Soldati, G., Manna, C., Galletti R, and Zappia, V. Resveratrol arrests the cell division cycle at S/G2 phase transition. Biochem Biophys Res Commun., 250, 53–58, 1998.

    Article  PubMed  CAS  Google Scholar 

  55. Slavoshian, S., Blottiere, H.M., Cherbut, C., and Galmiche, J.P. Butyrate stimulates cyclin D and p21 and inhibits cyclin-dependent kinase 2 expression in HT-29 colonic epithelial cells. Biochem. Biphys. Res Commun., 232, 169–172, 1997.

    Google Scholar 

  56. Nakano, K., Mizuno, T., Sowa, Y., Orita, T., Yoshino, T., Okuyama, Y., Fujita, T., Ohtani-Fujita, N., Matsukawa, Y., Tokino, T., Yamagishi, H., Oka, T., Nomura, H., and Sakai, T. Butyrate activates the WAF1/CIP1 gene promoter through spl sites in a p53-negtive colon cancercell line. J. Biol. Chem., 272, 22199–22206, 1997.

    Article  PubMed  CAS  Google Scholar 

  57. Candido, E.P.M., Reeves, R., and Davie, J.R. Sodium butyrate inhibits histone deacetylation in cultured cells. Cell, 14, 105–113, 1978.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Della Ragione, F. et al. (1999). Cell Division Cycle Alterations and Human Tumors. In: Zappia, V., Della Ragione, F., Barbarisi, A., Russo, G.L., Iacovo, R.D. (eds) Advances in Nutrition and Cancer 2. Advances in Experimental Medicine and Biology, vol 472. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3230-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3230-6_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3331-7

  • Online ISBN: 978-1-4757-3230-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics