Skip to main content

Anisotropic Plasticity Modeling Incorporating EBSD Characterization of Tantalum and Zirconium

  • Chapter
Electron Backscatter Diffraction in Materials Science

Abstract

The application of automated EBSD techniques in the context of an overall predictive materials modeling effort incorporating anisotropic properties for tantalum and zirconium is covered in this chapter. The focus will be on the role of microtextural investigations as an integral tool supporting the development and validation of material models that incorporate anisotropic constitutive behavior. Continuum mechanics codes require accurate descriptions of materials behavior to adequately predict large-strain deformation response. The corresponding requirement of characterizing micro structure s after significant deformation places severe requirements on the EBSD system. In this work, a Philips XL30 SEM employing a warm Schottky FEG was used for all data collection; the combination of high resolution with adequate beam current was a necessity for analyzing fine detail amid heavily worked structures. The ability to spatially resolve orientation differences on the order of 100 nm is achievable. All EBSD data collection and analysis was performed with TSL’s OIM™ software, while the popLA code (Kallend et al., 1991) was used for x-ray texture analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  • Chen, S.R., and Gray, III G.T., 1996, Constitutive behavior of tantalum and tantalum-tungsten alloys, Met. Trans. 27A:2994.

    CAS  Google Scholar 

  • Christian, J.W., and Mahajan, S., 1995, Deformation twinning, Prog. Mat. Sci. 39:1.

    Article  Google Scholar 

  • Clark, J.B., Garrett, Jr., R.K., Jungling, T.L., and Vandermeer, R.A., 1991, Effect of processing variables on texture and texture gradients in tantalum, Met. Trans. 22A:2039.

    CAS  Google Scholar 

  • Follansbee, P.S., and Kocks, U.F., 1988, A constitutive description of the deformation of copper based on the use of mechanical threshold stress as an internal state variable, Acta Metall. 36:81.

    Article  Google Scholar 

  • Gray III G.T., Bourne, N.K., Zocher, M.A., Maudlin, P.J., Millett, J.C.F., 1999, Influence ofcrystallographic anisotropy on the Hopkinson fracture ‘spallation’ of zirconium, in: Shock Compression of Condensed Matter -1999, M.F. Furnish, ed., Amer. Inst. Physics Press, Woodbury.

    Google Scholar 

  • Hawkyard, J.B., 1969, A theory for the mushrooming of flat-ended projectiles impinging on a flat rigid anvil, using energy considerations. Int. J. Mech. Sci. 11:313.

    Article  Google Scholar 

  • Hill, R., 1950, The Mathematical Theory of Plasticity, Oxford University Press, London.

    Google Scholar 

  • Hughes, D.A., Liu, Q., Chrzan, D.C., and Hansen, N., 1997, Scaling of microstructural parameters: misorientations of deformation induced boundaries, Acta mater. 45:105.

    Article  CAS  Google Scholar 

  • Hughes, D.A., and Hansen, N., 1997, High angle boundaries formed by grain subdivision mechanisms, Acta mater. 45:3871.

    Article  CAS  Google Scholar 

  • Hughes, D.A., Chrzan, D.C., Liu, Q., and Hansen, N., 1998, Scaling of misorientation angle distributions, Phys. Rev. Let. MA 664.

    Google Scholar 

  • Humphreys, F.J., Prangnell, P.B., Bowen, J.R., Gholinia, A., and Harris, C, 1999, Developing stable fine- grain microstructures by large strain deformation, Phil. Trans. R. Soc. Lond. A. 357:1663.

    Article  CAS  Google Scholar 

  • Kallend, J.S., Kocks, U.F., Rollett, A.D., and Wenk, H.-R., 1991, Operational texture analysis, Mat. Sci. Eng. A132:1.

    Google Scholar 

  • Kaschner, G.C., Gray, III G.T., and Chen, S.R., 1997, The influence of texture and impurities on the mechanical behavior of zirconium, in: Shock Compression of Condensed Matter, S.C. Schmidt, D.P. Dandekar, and J.W. Forbes, eds., American Institute of Physics, Amherst, MA.

    Google Scholar 

  • Kaschner, G.C., and Gray, III, G.T., 2000, The influence of crystallographic texture and interstitial impurities on the mechanical behavior of zirconium, submitted to Metall. Trans. A.

    Google Scholar 

  • Kelly, A.M., Bingert, S.R., and Reiswig, R.D., 1996, New metallographic preparation techniques for tantalum and tantalum alloys, Microstr. Sci. 23:185.

    CAS  Google Scholar 

  • Kelly, A.M., Bingert, S.R., and Thoma, D.J., 1998, Application of new tantalum metallographic preparation techniques to Group IV and V metals, Microstr. Sci. 26:347.

    Google Scholar 

  • Kocks, U.F., and Chandra, H., 1982, Slip geometry in partially constrained deformation, Acta Metal. 30:695.

    Article  CAS  Google Scholar 

  • Kuhlman-Wilsdorf, D., and Hansen, N., 1991, Geometrically necessary, incidental and subgrain boundaries, Scr. Metall. Mater.251557.

    Google Scholar 

  • Lebensohn, R.A., and Tomé, C.N., 1993, A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals: application to zirconium alloys, Acta metali. mater. 41:2611.

    Article  CAS  Google Scholar 

  • Lee, E.H., and Tupper, S.J., 1954, Analysis of plastic deformation in a steel cylinder striking a rigid target, J. Appl.Mech. 21:63.

    Google Scholar 

  • Liu, Q., and Hansen, N., 1995, Geometrically necessary boundaries and incidental dislocation boundaries formed during cold deformation, Scr. Metall. Mater. 32:1289.

    Article  CAS  Google Scholar 

  • Maudlin, P.J., Wright, S.I., Kocks, U.F., and Sahota, M.S., 1996, An application of multisurface plasticity: yield surfaces of textured materials, Acta Mater. 44:4027.

    Article  CAS  Google Scholar 

  • Maudlin, P. J., Bingert, J.F., House, J.W., and Chen, S.R., 1999, On the modeling of the Taylor cylinder impact test for orthotropic textured materials: experiments and simulations, Int. J. Plasticity 15:139.

    Article  CAS  Google Scholar 

  • Maudlin, P.J., Bingert, J.F., Gray III G.T., and Garrett Jr., R.K., 1999b, Symmetry investigation of textured polycrystal properties, to be published in: Proc. Fall 99 MRS Meeting.

    Google Scholar 

  • Maudlin, P.J., Gray, III G.T., Cady, CM., and Kaschner, G.C., 1999c, High-rate material modeling and validation using the Taylor cylinder impact test, Phil. Trans. R. Soc. Lond. A. 357:1707.

    Google Scholar 

  • Maudlin, P.J., and Bingert, J.F., 1999d, unpublished research.

    Google Scholar 

  • Reed-Hill, R.E., 1964, Role of deformation twinning in the plastic deformation of a polycrystalline anisotropic metal, in: Deformation Twinning, J.P. Hirth, R.E. Reed-Hill, and H.C. Rogers, eds., TMS, Warrendale, PA.

    Google Scholar 

  • Schwartz, A. J., Lasilla, D.H., and LeBlanc, M.M., 1998, The effects of tungsten addition on the microtexture and mechanical behavior of tantalum plate, Mat. Sci. Eng. A244:178.

    CAS  Google Scholar 

  • Taylor, G.I., 1948, The use of flat-ended projectiles for determining dynamic yield stress. I. Theoretical considerations. Proc. R. Soc. Lond. A. 194:289.

    Article  Google Scholar 

  • Tenckhoff, E., 1988, Deformation Mechanisms, Texture, and Anisotropy in Zirconium and Zircaloy, Special Technical Publication 966, ASTM, Philadelphia, PA.

    Google Scholar 

  • Tomé, C, Canova, G.R., Kocks, U.F., Christodolou, N., and Jonas, J.J., 1984, The relation between macroscopic and microscopic strain-hardening in fcc polycrystals, Acta Metall 32:1637.

    Article  Google Scholar 

  • VonDreele, R.B., 1997, Quantitative texture analysis by Rietveld refinement, J. Appl. Crystall 30:517.

    Article  CAS  Google Scholar 

  • Wright, S.I., Bingert, S.R., and Johnson, M.D., 1994, Effect of annealing temperature on the texture of rolled tantalum and tantalum-10 wt.% tungsten, in: Proc. 2nd Intl. Conf. on Tungsten and Refractory Metals, A. Bose and R.J. Dowding, eds., MPIF, Princeton, NJ.

    Google Scholar 

  • Wright, S.I., Gray III G.T., and Rollett, A.D., 1994b, Texture and microstructural gradient effects on the mechanical behavior of a tantalum plate, Met. Mat. Trans. 25A:1025.

    Article  CAS  Google Scholar 

  • Wright, S.I., Beaudoin, A.J., and Gray III G.T., 1994c, Texture gradient effects in tantalum, Mat. Sei. Forum. 157–162:1695.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bingert, J.F., Mason, T.A., Kaschner, G.C., Maudlin, P.J., Gray, G.T. (2000). Anisotropic Plasticity Modeling Incorporating EBSD Characterization of Tantalum and Zirconium. In: Schwartz, A.J., Kumar, M., Adams, B.L. (eds) Electron Backscatter Diffraction in Materials Science. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3205-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3205-4_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-3207-8

  • Online ISBN: 978-1-4757-3205-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics