Skip to main content

Abstract

Over the past two decades or so, electron backscatter diffraction (EBSD) has become an increasingly important analytical technique in characterizing polycrystalline microstructures. As this tool was championed by the texture analysis community in the early stages of its application to materials research, characterization of deformed materials has been a significant fraction of the EBSD applications research published in the open literature. This chapter focuses on the application of EBSD to the characterization of deformed materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  • Adams, B.L., Morris, P.R., Wang, T.T., Willden, K.S., and Wright, S.I., 1987, Description of orientation coherence in polycrystalline materials, Acta metall 35:2935.

    Article  CAS  Google Scholar 

  • Adams, B.L., Wright, S.I., and Kunze, K. 1993, Orientation imaging: The emergence of a new microscopy, Metall. Trans. 24A:819.

    CAS  Google Scholar 

  • Baggethun, P., 1998, Ph.D. thesis, University of Manchester Institute of Science and Technology.

    Google Scholar 

  • Becker, R., and Panchanadeeswaran, S., 1995, Effects of grain interactions on deformation and local texture in polycrystals, Acta metall, mater. 43:2701.

    Article  CAS  Google Scholar 

  • Field, D.P., and Adams, B.L., 1990, Unrecoverable strain hardening in torsionally strained OFHC copper, J. Eng. Mails. Tech. 112:315.

    Article  CAS  Google Scholar 

  • Field, D.P., and Weiland, H., 1994, The Dependence of dislocation density and cell size on crystallographic orientation in aluminum, Mails. Sci. Forum. 157–162:1181.

    Google Scholar 

  • Hansen, N., Juul Jensen, D., Huang, X., and Bunsch, A., 1996, Deformation induced changes in microstructure, local orientation and bulk texture, in: Proceedings of the Eleventh International Conference on Textures of Materials, International Academic Publishers, Beijing: 1331.

    Google Scholar 

  • Harland, C.J., Akhter, P. and Venables, J.A., 1981, Accurate microcrystallography in the SEM. J. Phys. E. 14:175.

    Article  CAS  Google Scholar 

  • Hjelen, J., Weiland, H., Butler, J., Liu, J., Hu, H., and Nes, E., 1991, The orientation distribution in channel die compressed Al single crystals as studied by micro-diffraction techniques in SEM and TEM, Textures and Microstructures. 14–18:983.

    Google Scholar 

  • Hughes, D.A., 1997, The effect of dislocation microstructures and grain subdivision on crystal plasticity, in: Prodeedings of Plasticity ‘97: The Sixth International Symposium on Plasticity and its Current Applications, Neat Press, Fulton, Maryland: 253–254.

    Google Scholar 

  • Humphreys, F.J. and Brough, I., 1999, High resolution EBSD with a FEGSEM, J. Microscopy. In Press.

    Google Scholar 

  • Isabell, T.C., and Dravid, V.P., 1997, Resolution and sensitivity of electron backscattered diffraction in a cold field emission gun SEM, Ultramicroscopy. 67:59.

    Article  CAS  Google Scholar 

  • Krieger-Lassen, N.C., Conradsen, K., and Juul-Jensen, D., 1992, Image processing procedures for analysis of electron back scattering patterns, Scanning Microse. 6:115.

    Google Scholar 

  • Kuhlmann-Wilsdorf, D. 1985, Theory of workhardening 1934–1984, Metall. Trans. 16A:2091.

    Google Scholar 

  • Lee, D.N., 1999, Private Communication.

    Google Scholar 

  • Lee, P.S., Rollett, A.D., and Adams, B.L., 1999, Development and application of a disorientation correlation functión, in: Proceedings of the Twelfth International Conference on Textures of Materials, J.A. Szpunar, ed., NRC Research Press, Ottawa.

    Google Scholar 

  • Murr, L.E., Liu, J., and McClure, J.C., 1998. A TEM study of precipitation and related microstructures in friction stir welded 6061 aluminum, Journal of Materials Science. 33:1243.

    Article  CAS  Google Scholar 

  • Nye, J.F., 1953, Some geometrical relations in dislocated crystals, Acta metali. 1:153.

    Article  CAS  Google Scholar 

  • Raj, S.V., and Pharr, G.M., 1986, A compilation and analysis of data for the stress dependence of the subgrain size, Mat. Sci. Eng. 81:217.

    Article  CAS  Google Scholar 

  • Segal, V.M., 1981, Plastic working of metals by simple shear, Russ. Metall. (English translation). 1:99.

    Google Scholar 

  • Sun, S., Adams, B.L., and King, W.E., 2000, Observation of lattice curvature near the interface of a deformed aluminium bi-crystal, Phil. Mag. A. 80:9.

    Article  CAS  Google Scholar 

  • Taylor, G.I., 1934, Plastic strain in metals, Proc. Roy. Soc. A145:362.

    Google Scholar 

  • Thomas, W.M., Nicholas, E.D., Needham, J.C., Murch, M.G., Temple-Smith, P., and Dawes, C.J., 1993, Improvements relating to friction welding (friction stir welding and friction plunge welding), The Welding Institute, PCT World Patent Application WO 93/10935. Published 10 June.

    Google Scholar 

  • Troost, K.Z., 1993, Submicron crystallography in the scanning electron microscope. Philips J. Res. 47:151.

    CAS  Google Scholar 

  • Troost, K.Z., Slangen, M.H.J., and Gerritsen, E., 1994, Microtexture determination of as-drawn tungsten wires by backscatter Kikuchi diffraction in the scanning electron microscope, Materials Science Forum. 157–162:1299.

    Article  Google Scholar 

  • Umezawa, O., and Nagai, K., 1998, Deformation structure and subsurface fatigue crack generation in austenitic steels at low temperature, Metall. Mater. Trans. 29A:809.

    Article  CAS  Google Scholar 

  • Valiev, R.Z., Krasilnikov, N.A., and Tsenev, N.K., 1991, Mater. Sci. Eng. A137:35.

    CAS  Google Scholar 

  • Venables, J.A., and Harland, C.J., 1973, Electron back-scattering patterns—A new technique for obtaining crystallographic information in the scanning electron microscope, Philos. Mag. 27:1193.

    Article  CAS  Google Scholar 

  • Weiland, H., Rouns, T.N., and Liu, J., 1994, The role of particle stimulated nucleation during recrystallization of an aluminum-manganese alloy, Z. Metallkunde. 85:592.

    CAS  Google Scholar 

  • Weiland, H., and Field, D.P., 1994, Automatic analysis of Kikuchi diffraction patterns. Proc. Electron Microscopy Soc. Amer. 42:900.

    Google Scholar 

  • Wilkinson, A.J., and Dingley, D.J., 1991, Quantitative deformation studies using electron back scatter patterns, Acta metali, mater. 39:3047.

    Article  CAS  Google Scholar 

  • Woodfield, A.P., Gorman, M.D., Corderman, R.R., Sutliff, J.A., and Yamrom, B., 1995, Effect of microstructure on dwell fatigue behavior of Ti-6242, Titanium ‘95: Science and Technology, Volume II, The Institute of Materials, London: 1116.

    Google Scholar 

  • Wright, S.I., 1993, A review of automated orientation imaging microscopy (OIM), J. Computer-Assisted Microscopy. 5:207.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Field, D.P., Weiland, H. (2000). Characterization of Deformed Microstructures. In: Schwartz, A.J., Kumar, M., Adams, B.L. (eds) Electron Backscatter Diffraction in Materials Science. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3205-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3205-4_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-3207-8

  • Online ISBN: 978-1-4757-3205-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics