Skip to main content

Abstract

Experimentation, theory, and modeling have all played vital roles in defining what is known about microstructural evolution and the effects of microstructure on material properties. Recently, technology has become an enabling factor, allowing significant advances to be made on several fronts. Experimental evidence of crystallographic slip and the basic theory of crystal plasticity were established in the early 20th century (Polanyi, 1922; Schmid, 1924; Taylor and Elam, 1925), and the theory and models evolved incrementally over the next 60 years (Taylor, 1938; Bishop and Hill, 1951; Hutchinson, 1964; Hill and Rice, 1972; Honneff and Mecking, 1978; Asaro, 1983a; Kocks et al., 1986). During this time, modeling was primarily concerned with the average response of polycrystalline aggregates. While some detailed finite element modeling (FEM) with crystal plasticity constitutive relations was performed in the early 1980’s (Peirce et al., 1982, 1983), such simulations over taxed the capacity of the available computer hardware. Advances in computer capabilities led to a flurry of activity in finite element modeling in the next 10 years (Harren et al., 1988; Havileck et al., 1990; Zikry and Nemat-Nasser, 1990; Becker et al., 1991; Kalidindi et al., 1992; Beaudoin et al., 1993; Saeedvafa and Rice, 1992; Mohan et al., 1992), thus increasing understanding of lattice orientation evolution and generating detailed predictions of spatial orientation distributions that could not be readily validated with existing experimental characterization methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  • Anand, L., and Kothari, M., 1996, A computational procedure for rate-independent crystal plasticity, J. Mech. Phys. Solids 44:525.

    Article  CAS  Google Scholar 

  • Asaro, R.J., 1983a, Crystal plasticity, J. Appl. Mech. 50:921.

    Article  Google Scholar 

  • Asaro, R.J., 1983b, Micromechanics of crystals and polycrystals, in: Advances in Applied Mechanics, Academic Press, New York.

    Google Scholar 

  • Bassani, J.L., 1990, Single crystal hardening, Appl. Mech. Rev. 43:S320.

    Article  Google Scholar 

  • Bassani, J.L., and Wu, T.-Y., 1991, Latent hardening in single crystals II. Analytical characterization and predictions, Proc. Roy. Soc. Lond. A 435:21.

    Article  Google Scholar 

  • Beaudoin, A.J., Mather, K.K., Dawson, P.R., and Johnson, G.C., 1993, Three dimensional deformation process simulation with explicit use of polycrystalline plasticity models, Int. J. Plast. 9:833.

    Article  CAS  Google Scholar 

  • Beaudoin, A. J., Bryant, J.D., and Korzekwa, D.A., 1998, Analysis of ridging in aluminum, Metall. Trans. A 29:2323.

    Article  Google Scholar 

  • Becker, R., 1991, Analysis of texture evolution in channel die compression-I. Effects of grain interaction, Acta Metall. Mater. 39:1211.

    Article  Google Scholar 

  • Becker, R., 1992, Analysis of shear localization during bending of a polycrystalline sheet, J. Appl. Mech. 59:491.

    Article  CAS  Google Scholar 

  • Becker, R., 1998, Effects of strain localization on surface roughening during sheet forming, Acta Mater. 46:1385.

    Article  CAS  Google Scholar 

  • Becker, R., Butler, J.F., Hu, H., and Lalli, L.A., 1991, Analysis of an aluminum single crystal with unstable initial orientation (001)[110] in channel die compression, Metal. Trans. A 22:45.

    Google Scholar 

  • Becker, R., and Panchanadeeswaran, S., 1995, Effects of grain interactions on deformation and local texture in polycrystals, Acta Metall. Mater. 43:2701.

    Article  CAS  Google Scholar 

  • Bhattacharyya, A., El-Danaf, E., Kalidindi, S.R., and Doherty, R.D., 2000, Evolution of grain-scale microstructure during large strain simple compression of polycrystalline aluminum with quasi- columnar grains: OIM measurements and numerical simulations, Submitted for publication.

    Google Scholar 

  • Bishop, J.F.W., and Hill, R., 1951, A theoretical derivation of the plastic properties of a polycrystalline face centered metal, Philos. Mag. 42:414.

    CAS  Google Scholar 

  • Cuitino, A.M., and Ortiz, M., 1992, Computational modelling of single crystals, Modelling Simul. Mater. Sei. Engr. 1:225.

    Article  Google Scholar 

  • Harren, S.V., 2000, On the constitutive behavior of thermoelastic-viscoplastic crystals: theoretical and computational issues, Submitted for publication.

    Google Scholar 

  • Harren, S.V., Dève, H.E., and Asaro, R.J., 1988, Shear band formation in plane strain compression, Acta Metall. 36:2435.

    Article  CAS  Google Scholar 

  • Havilcek, F., Kratochvil, J., Tokuda, M., and Lev, V., 1990, Finite element model of plastically deformed multicrystal, Int. J. Plast. 6:281.

    Article  Google Scholar 

  • Hill, R., and Rice, J.R., 1972, Constitutive analysis of elastic-plastic crystals at arbitrary strain, J. Mech. Phys. Solids 20:401.

    Article  Google Scholar 

  • Honneff, H., and Mecking, H., 1978, Textures in Metals, G. Gottstein and K. Lücke, eds., Springer, Berlin.

    Google Scholar 

  • Humphreys, F.J., 1998, Quantitative metallography by electron backscattered diffraction, J. Microscopy 195:170.

    Article  Google Scholar 

  • Humphreys, F.J., 1999, Modelling microstructural evolution during annealing, Presented at workshop on Integrated Materials Modelling, Achen, Germany.

    Google Scholar 

  • Hutchinson, J.W., 1964, Plastic deformation of B.C.C. polycrystals, J. Mech. Phys. Solids 12:25.

    Article  Google Scholar 

  • Kalidindi, S.R., Bronkhorst, CA., and Anand, L., 1992, Crystallographic texture evolution in bulk deformation processing of FCC metals, J. Mech. Phys. Solids 40:537.

    Article  CAS  Google Scholar 

  • Kallivayalil, J.A., Weiland, H., and Becker, R., 1998, Unpublished research.

    Google Scholar 

  • Kocks, U.F., Tomé, C, and Canova, G.R., 1986, Effective-cluster simulation of polycrystal plasticity, in: Large Deformations of Solids, J. Gittus, J. Zarka, and S. Nemat-Nasser, eds., Elsevier Applied Science, New York.

    Google Scholar 

  • Miehe, C, 1996, Exponential map algorithm for stress updates in anisotropic multiplicative elastoplasticity for single crystals, Int. J. Num. Meth. Engr. 39:3367.

    Article  Google Scholar 

  • Mohan, R., Ortiz, M., and Shih, CF., 1992, Mode mixity effects on crack tip deformation in ductile single crystals, Acta. Metall. Mater. 40:1907.

    Article  Google Scholar 

  • Ortiz, M., and Stainier, L., 1999, The variational formulation of viscoplastic constitutive updates, Comp. Meth. Appl. Mech. Engr. 171:419.

    Article  Google Scholar 

  • Panchanadeeswaran, S., Doherty, R.D., and Becker, R., 1996, Direct observation of orientation change by channel die compression of polycrystalline aluminum—use of a split sample, Acta Mater. 44:1233.

    Article  CAS  Google Scholar 

  • Peirce, D., Asaro, R.J., and Needleman, A., 1982, An analysis of nonuniform and localized deformation in ductile single crystals, Acta Metall. 30:1087.

    Article  CAS  Google Scholar 

  • Peirce, D., Asaro, R.J., and Needleman, A., 1983, Material rate dependence and localized deformation in crystalline solids, Acta Metall. 31:1951.

    Article  CAS  Google Scholar 

  • Polanyi, von M., 1922, Röntegenographische bestimmung von kristallanordnungen, Naturwissenschaften 10:411.

    Article  CAS  Google Scholar 

  • Qin, Q., and Bassani, J.L., 1992, Non-Schmid yield behavior in single crystals, J. Mech. Phys. Solids 40:813.

    Article  CAS  Google Scholar 

  • Radhakrishnan, B., Sarma, G., Weiland, H., and Baggathun, P., 2000, Simulation of deformation and recrystallization of single crystals of aluminum containing hard particles, submitted to Modeling and Simulation in Materials Science and Engineering.

    Google Scholar 

  • Saeedvafa, M., and Rice, J.R., 1992, Crack tip fields in a material with three independent slip systems: NiAl single crystal, Modelling and Simul. Mater. Sci. Engr. 1:53.

    Article  CAS  Google Scholar 

  • Schmid, E., 1924, Proc. Int. Cong Appl. Mech. (Delft), 342.

    Google Scholar 

  • Schwartz, A.J., Stölken, J.S., King, W.E., and Campbell, G.H., 2000, Lattice rotation during compression deformation of a [011] Ta Single Crystal, to appear in Mat. Sci Engr. A.

    Google Scholar 

  • Stölken, J.S., King, W.E., Schwartz, A. J., Wall, M.A., and Nguyen, L., 1999, Reconstruction of a 3D micro- structure using orientation imaging microscopy, in: Advances in Materials Problem Solving with the Electron Microscope, C. Allen, J. Bentley, U. Dahmen and I. Petrov, eds., MRS Proceedings, Boston.

    Google Scholar 

  • Taylor, G.I., 1938, Plastic strain in metals, J. Inst. Met. 62:307.

    Google Scholar 

  • Taylor, G.I., and Elam, CF., 1925, The plastic extension and fracture of aluminum crystals, Proc. R. Soc. London, Sec A 108:28.

    Article  CAS  Google Scholar 

  • Tvergaard, V., Needleman, A., and Lo, K.K., 1981, Flow localization in the plane strain tensile test, J. Mech. Phys. Solids 29:115.

    Article  Google Scholar 

  • Vogel, S., Klimanek, P., Juul Jensen, D., and Richter, H., 1996, Effect of texture on the development of grain size distribution during normal grain growth, Scripta Mater. 34:1225.

    Article  CAS  Google Scholar 

  • Weiland, H., and Becker, R., 1999, Analysis of mesoscale deformation structures in aluminum, Deformation induced Microstructures: Analysis and Relation to Properties, J.B. Bilde-Sorensen, J.V. Cartensen, N. Hansen, D. Juul Jensen, T. Leffers, W. Pantleon, O.B. Pedersen and G. Winther, eds., Riso National Laboratory, Roskilde, Denmark.

    Google Scholar 

  • Zikry, M.A., and Nemat-Nasser, S., 1990, High strain-rate localization and failure of crystalline materials, J. Mech. Mater. 10:215.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Becker, R., Weiland, H. (2000). Use of EBSD Data in Mesoscale Numerical Analyses. In: Schwartz, A.J., Kumar, M., Adams, B.L. (eds) Electron Backscatter Diffraction in Materials Science. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3205-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3205-4_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-3207-8

  • Online ISBN: 978-1-4757-3205-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics