Skip to main content

Part of the book series: High-Accuracy CMOS Smart Temperature Sensors ((SECS,volume 595))

  • 493 Accesses

Abstract

This chapter describes the theory and design of the different kinds of dynamic offset-cancellation techniques. These techniques can reduce the offset of an amplifier by a factor of 100 to 1000 and do not need trimming. Knowledge of these techniques is necessary to improve the accuracy of CMOS smart temperature sensors. Also in this chapter, a new technique is proposed that can even further reduce the offset. This technique is called the “nested chopper technique”. An implementation of this new technique is shown and measurement results are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.J. Williams, R.E. Tarpley and W.R. Clark, “D-C amplifier stabilized for zero and gain”, Trans. AIEE, vol.67, pp.47–57, 1948

    Google Scholar 

  2. Maxim Integrated Products, “ICL7650, Chopper Stabilized Operational Amplifier”, http://www.maxim-ic.com, June 1999

    Google Scholar 

  3. Linear Technology, “LTC1050, Precision chopper stabilized operational amplifier with internal capacitors”, http://www.linear.com, June 1999

    Google Scholar 

  4. National Semiconductor, “LMC2001, High Precision, 6MHz Rail-To-Rail Output Operational Amplifier”, http://www.national.com, June 1999

    Google Scholar 

  5. J.F. Franca and Y. R. Tsividis, “Design of VLSI Circuits for Telecommunications and Signal Processing”, Prentice Hall, 1991

    Google Scholar 

  6. C.C. Enz and G.C. Temes, “Circuit techniques for reducing the effects of opamp imperfections: autozeroing, correlated double sampling and chopper stabilization”, Proc. of the IEEE, vol.84, no. 11, pp. 1584–1614, november 1996

    Article  Google Scholar 

  7. Texas Instruments, “TLC4501, Self-calibrating operational amplifier”, http://www.ti.com, May 1999

    Google Scholar 

  8. C.G. Yu and R.L. Geiger, “An automatic offset compensation scheme with ping-pong control for CMOS operational amplifiers”, IEEE Journal of Solid-State Circuits, vol.29, pp.601–610, May 1994

    Article  Google Scholar 

  9. M. Degrauwe, E.A. Vittoz and I. Verbauwhede, “A micropower CMOS Instrumentation amplifier”, IEEE Journal of Solid-State Circuits, vol.20, pp.805–807, June 1985

    Article  Google Scholar 

  10. C.C. Enz, E.A. Vittoz and F. Krummenacher, “A CMOS chopper amplifier,” IEEE Journal of Solid-State Circuits, vol.22, pp.335–342, June 1987

    Article  Google Scholar 

  11. I.E. Opris and G.T.A. Kovacs, “A rail-to-rail ping-pong opamp”, IEEE Journal of Solid-State Circuits, vol.31, pp.1320–1324, September 1996

    Article  Google Scholar 

  12. K.H. White, D.R. Lampe, F.C. Blaha and I.A. Mack, “Characterization of surface channel CCD image arrays at low light levels,” IEEE Journal of Solid-State Circuits, vol.9, pp. 1–14, February 1974

    Article  Google Scholar 

  13. R.W. Brodersen and S.P Emmons, “Noise in buried channel chargecoupled devices”, IEEE Journal of Solid-State Circuits, vol.11, pp. 147–156, February 1976

    Article  Google Scholar 

  14. C. Menolfi and Q. Huang, A low-noise CMOS instrumentation amplifier for thermoelectric infrared detectors, IEEE Journal of Solid-State Circuits, vol.32, pp.968–976, July 1997

    Article  Google Scholar 

  15. C. Menolfi and Q. Huang, “A fully integrated CMOS instrumentation amplifier with submicrovolt offset”, IEEE Journal of Solid-State Circuits, vol.34, pp.415–420, March 1999

    Article  Google Scholar 

  16. K.C. Hsieh, P.R. Gray, D. Senderowicz and D.G. Messerschmitt, A low-noise chopper stabilized differential switched-capacitor filtering technique, IEEE Journal of Solid-State Circuits, vol.16, pp.708–715, December 1981

    Article  Google Scholar 

  17. G.C.M. Meijer, “Concepts and focus point for intelligent sensor systems”, Sensors and Actuators, vol.41, pp.183–191, 1994

    Article  Google Scholar 

  18. P.C. de Jong, G.C.M. Meijer and A.H.M. van Roermund, “A 300°C dynamic-feedback instrumentation amplifier”, IEEE Journal of Solid-State Circuits, vol.33, pp. 1999–2009, December 1998

    Article  Google Scholar 

  19. A. Bakker and J.H. Huijsing, “Low-offset, low-noise 3.5mW CMOS spinning-current Hall-effect sensor with integrated chopper amplifier”, Proc. Eurosensors XIII, The Hague, The Netherlands, pp. 1045–1048, September 1999

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bakker, A., Huijsing, J. (2000). Dynamic offset-cancellation techniques. In: High-Accuracy CMOS Smart Temperature Sensors. High-Accuracy CMOS Smart Temperature Sensors, vol 595. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3190-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3190-3_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-4862-5

  • Online ISBN: 978-1-4757-3190-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics