Skip to main content

Solvent Effects on Emission Spectra

  • Chapter
Principles of Fluorescence Spectroscopy

Abstract

Solvent polarity and the local environment have profound effects on the emission spectra of polar fluorophores. These effects are the origin of the Stokes’ shift, which is one of the earliest observations in fluorescence. Emission spectra are easily measured, and as a result, there are numerous publications on emission spectra of fluorophores in different solvents and when bound to proteins, membranes, and nucleic acids. One common use of solvent effects is to determine the polarity of the probe binding site on the macromolecule. This is accomplished by comparison of the emission spectra and/or quantum yields of the fluorophore when it is bound to the macromolecule and when it is dissolved in solvents of different polarity. However, there are many additional instances where solvent effects are used. Suppose a fluorescent ligand binds to a protein. Binding is usually accompanied by a spectral shift due to the different environment for the bound ligand. Alternatively, the ligand may induce a spectral shift in the intrinsic or extrinsic protein fluorescence. Additionally, fluorophores often display spectral shifts when they bind to membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Safarzadeh-Amiri, A., Thompson, M., and Krull, U. J., 1989, Trans-4-dimethylamino-4-(1-oxobutyl)stilbene: A new fluorescent probe of the bilayer lipid membrane, J. Photochem. Photobiol. A: Chem. 47: 299–308.

    Article  CAS  Google Scholar 

  2. Von Lippert, E., 1957, Spektroskopische bistimmung des dipolmomentes aromatischer verbindungen im ersten angeregten singulettzustand, Z. Electrochem. 61: 962–975.

    CAS  Google Scholar 

  3. Mataga, N., Kaifu, Y., and Koizumi, M., 1956, Solvent effects upon fluorescence spectra and the dipole moments of excited molecules, Bull. Chem. Soc. Jpn. 29: 465–470.

    Article  CAS  Google Scholar 

  4. Rettig, W., 1986, Charge separation in excited states of decoupled systems—TICT compounds and implications regarding the development of new laser dyes and the primary processes of vision and photosynthesis, Angew. Chem. Int. Ed. Engl. 25: 971–988.

    Article  Google Scholar 

  5. Bayliss, N. S., 1950, The effect of the electrostatic polarization of the solvent on electronic absorption spectra in solution, J. Chem. Phys. 18: 292–296.

    Article  CAS  Google Scholar 

  6. Bayliss, N. S., and McRae, E. G., 1954, Solvent effects in organic spectra: Dipole forces and the Franck–Condon principle, J. Phys. Chem. 58: 1002–1006.

    Article  CAS  Google Scholar 

  7. McRae, E. G., 1956, Theory of solvent effects of molecular electronic spectra. Frequency shifts, J. Phys. Chem. 61: 562–572.

    Article  Google Scholar 

  8. Baumann, W., and Bischof, H., 1982, Integral electro optical emission measurements. A new method for the determination of dipole moments of molecules in fluorescent states, J. Mol. Struct. 84: 18 1193.

    Google Scholar 

  9. Kawski, A., 1992, Solvent-shift effect of electronic spectra and excited state dipole moments, in Progress in Photochemistry and Photophysics, J. F. Rabek (ed.), CRC Press, New York, pp. 1–47.

    Google Scholar 

  10. Seliskar, C. J., and Brand, L., 1971, Electronic spectra of 2-aminonaphthalene-6-sulfonate and related molecules. II, Effects of solvent medium on the absorption and fluorescence spectra, J. Am. Chem. Soc. 93: 5414–5420.

    Article  CAS  Google Scholar 

  11. Suppan, P., 1990, Solvatochromic shifts: The influence of the medium on the energy of electronic states, J. Photochem. Photobiol. A: Chem. 50: 293–330.

    Article  CAS  Google Scholar 

  12. Bakhshiev, N. G., 1961, Universal molecular interactions and their effect on the position of the electronic spectra of molecules in two component solutions I. Theory (liquid solutions), Opt. Spectrosc. 10: 379–384.

    Google Scholar 

  13. Bakhshiev, N. G., 1962, Universal molecular interactions and theireffects on the position of electronic spectra of molecules in two-component solutions. IV. Dependence on the magnitude of the Stokes shift in the solvent luminescence spectrum (liquid solutions), Opt. Spectrosc. 12: 309–313.

    Google Scholar 

  14. Bakhshiev, N. G., 1962, Universal intermolecular interactions and their effect on the position of the electronic spectra of molecules in two-component solutions, Opt. Spectrosc. 13: 24–29.

    Google Scholar 

  15. Weber, G., and Laurence, D. J. R., 1954, Fluorescent indicators of absorption in aqueous solution and on the solid phase, Biochem. J. 56:xxxi.

    Google Scholar 

  16. Slavik, J., 1982, Anilinonaphthalene sulfonate as a probe of membrane composition and function, Biochim. Biophys. Acta 694: 1–25.

    Article  CAS  Google Scholar 

  17. McClure, W. O., and Edelman, G. M., 1954, Fluorescent probes for conformational states of proteins. I. Mechanism of fluorescence of 2-p-toluidinylnaphthalene-6-sulfonate, a hydrophobic probe, Biochemistry 5: 1908–1919.

    Article  Google Scholar 

  18. Brand, L., Seliskar, C. J., and Turner, D. C., 1971, The effects of chemical environment on fluorescence probes, in Probes of Structure and Function of Macromolecules and Membranes, B. Chance, C. P. Lee, and J.-K. Blaisie (eds.), Academic Press, New York, pp. 17–39.

    Google Scholar 

  19. Turner, D.C., and Brand, L., 1968, Quantitative estimation of protein binding site polarity. Fluorescence of N-arylaminonaphthalenesulfonates, Biochemistry 7: 3381–3390.

    Article  CAS  Google Scholar 

  20. Kosower, E. M., and Dodiuk, H., 1978, Intramolecular donor–acceptor systems. 3. A third type of emitting singlet state for N-alkyl6-N-arylamino-2-naphthalenesulfonates. Solvent modulation of substituent effects on charge-transfer emissions, J. Am. Chem. Soc. 100: 4173–4179.

    Article  CAS  Google Scholar 

  21. Kosower, E. M., and Kanety, H., 1983, Intramolecular donor–acceptor systems. 10. Multiple fluorescence from 8-(phenylamino)-1naphthalenesulfonates, J. Am. Chem. Soc. 105: 6236–6243.

    Article  CAS  Google Scholar 

  22. Kosower, E. M., and Huppert, D., 1986, Excited state electron and proton transfers, Annu. Rev. Phys. Chem. 37: 127–156.

    Article  CAS  Google Scholar 

  23. Wilt, J. W., and Chwang, W. K., 1974, Fluorescence of 2-N-arylamino-6-naphthalenesulfonates in glycerol, J. Am. Chem. Soc. 96: 6195–6196.

    Article  Google Scholar 

  24. Huppert, D., Ittah, V., and Kosower, E. M., 1988, New insights into the mechanism of fast intramolecular electron transfer, Chem. Phys. Lett. 144: 15–22.

    Article  CAS  Google Scholar 

  25. Kosower, E. M., 1968, An Introduction to Physical Organic Chemistry, John Wiley amp; Sons, New York, pp. 293–382.

    Google Scholar 

  26. Kosower, E. M., 1958, The effect of solvent on spectra. I. A new empirical measure of solvent polarity: Z-values, J. Am. Chem. Soc. 80: 3253–3260.

    Article  CAS  Google Scholar 

  27. Dimroth, K., Reichardt, C., Siepmann, T., and Bohlmann, F, 1963, Über pyridinium-N-phenol-betaine und ihre verwendung zur charakterisierung der polarität von lösungsmitteln, Liebigs Ann. Chem. 661: 1–37.

    Article  CAS  Google Scholar 

  28. Reichardt, C., and Harbusch-Gömert, E., 1983, Erweiterung, korrektur und neudefinition der E -.lösungsmittelpolaritätsskala mit hilfe eines lipophilen penta-tert-butyl-substituierten pyridinium-Nphenolat-betainfarbstoffes, Liebigs Ann. Chem. 5: 721–743.

    Article  Google Scholar 

  29. Kamlet, M. J., Abboud, J. L., and Taft, R. W., 1977, The solvatochromic comparison method. 6. The it scale of solvent polarities, J. Am. Chem. Soc. 99: 6027–6038.

    Article  CAS  Google Scholar 

  30. Von Reichardt, C., 1965, Empirische parameter der lösungsmittelpolarität, Angew. Chem. 77: 30–40.

    Article  CAS  Google Scholar 

  31. Buncel, E., and Rajagopal, S., 1990, Solvatochromism and solvent polarity scales, Acc. Chem. Res. 23: 226–231.

    Article  CAS  Google Scholar 

  32. Reichardt, C., 1994, Solvatochromic dyes as solvent polarity indicators, Chem. Rev. 94: 2319–2358.

    Article  CAS  Google Scholar 

  33. Valeur, B., 1993, Fluorescent probes for evaluation of local physical and structural parameters, in Molecular Luminescence Spectroscopy, Methods and Applications, Part 3, S. G. Schulman (ed.), John Wiley amp; Sons, pp. 25–84.

    Google Scholar 

  34. Bakhshiev, N. G., 1962, Universal molecular interactions and their effect on the position of electronic spectra of molecules in two-component solutions, Opt. Spectrosc. 12: 261–264.

    Google Scholar 

  35. Perov, A. N., 1980, Energy of intermediate pair interactions as a characteristic of their nature. Theory of the solvato (fluoro) chromism of three-component solutions, Opt. Spectmsc. 49: 37 1374.

    Google Scholar 

  36. Neporent, B. S., and Bakhshiev, N. G., 1960, On the role of universal and specific intermolecular interactions in the influence of the solvent on the electronic spectra of molecules, Opt. Spectrosc. 8: 408–413.

    CAS  Google Scholar 

  37. Cherkasov, A. S., 1960, Influence of the solvent on the fluorescence spectra of acetylanthracenes, Akad. Nauk SSSR Bull. Phys. Sci. 24: 597–601.

    Google Scholar 

  38. Tamaki, T., 1982, The photoassociation of 1- and 2-acetylanthracene with methanol, Bull. Chem. Soc. Jpn. 55: 1761–1767.

    Article  CAS  Google Scholar 

  39. Tamaki, T., 1980, Polar fluorescent state of 1- and 2-acylanthracenes. II. The perturbation of protic solvents, Bull. Chem.Soc. Jpn. 53: 577–582

    Article  CAS  Google Scholar 

  40. Fery-Forgues, S., Fayet, J.-P., and Lopez, A., 1993, Drastic changes in the fluorescence properties of NBD probes with the polarity of the medium: Involvement of a TICT state, J. Photochem. Photobiol. A: Chem. 70: 229–243.

    Article  CAS  Google Scholar 

  41. Mazères, S., Schram, V., Tocanne, J.-F., and Lopez, A., 1996, 7-Nitrobenz-2-oxa-1,3-diazole-4-yl-labeled phospholipids in lipid membranes: Differences in fluorescence behavior, Biophys. J. 71: 327–335.

    Google Scholar 

  42. Perochon, E., and Tocanne, J.-E, 1991, Synthesis and phase properties of phosphatidylcholine labeled with 8-(2-anthroyl)-octanoic acid, a solvatochromic fluorescent probe, Chem. Phys. Lipids 58: 717.

    Article  Google Scholar 

  43. Perochon, E., Lopez, A., and Tocanne, J. F., 1991, Fluorescence properties of methyl 8-(2-anthroyl) octanoate, a solvatochromic lipophilic probe, Chem. Phys. Lipids 59: 17–28.

    Article  CAS  Google Scholar 

  44. Rosenberg, H. M., and Eimutus, E., 1966, Solvent shifts in electronic spectra I. Stokes’ shift in a series of homologous aromatic amines, Spectrochim. Acta 22: 1751–1757.

    Article  CAS  Google Scholar 

  45. Werner, T. C., and Hercules, D. M., 1969, The fluorescence of 9-anthroic acid and its esters. Environmental effects on excited-state behavior, J. Phys. Chem. 73: 2005–2011.

    Article  CAS  Google Scholar 

  46. Werner, T. C., and Hoffman, R. M., 1973, Relation between an excited state geometry change and the solvent dependence of 9-methyl anthroate fluorescence, J. Phys. Chem. 77: 1611–1615.

    Article  CAS  Google Scholar 

  47. Werner, T. C., Matthews, T., and Soller, B., 1976, An investigation of the fluorescence properties of carboxyl substituted anthracenes, J. Phys. Chem. 80: 533–541.

    Article  CAS  Google Scholar 

  48. Garrison, M. D., Doh, L. M., Potts, R. O., and Abraham, W., 1994, Fluorescence spectroscopy of 9-anthroyloxy fatty acids in solvents, Chem. Phys. Lipids 70: 155–162.

    Article  CAS  Google Scholar 

  49. Berberan-Santos, M. N., Prieto, M. J. E., and Szabo, A. G, 1991, Excited-state intramolecular relaxation of the lipophillic probe 12(9-anthroyloxy)stearic acid, J. Phys. Chem. 95: 5471–5475.

    Article  CAS  Google Scholar 

  50. Thulbom, K. R., and Sawyer, W. H., 1978, Properties and the locations of a set of fluorescent probes sensitive to the fluidity gradient of the lipid bilayer, Biochim. Biophys. Acta 511: 125–140.

    Article  Google Scholar 

  51. Badea, M. G., De Toma, R. P., and Brand, L., 1978, Nanosecond relaxation processes in liposomes, Biophys. J. 24: 197–212.

    Article  CAS  Google Scholar 

  52. Lakowicz, J. R., and Baiter, A., 1982, Direct recording of the initially excited and the solvent relaxed fluorescence emission of a tryptophan derivative in viscous solution by phase sensitive detection of fluorescence, Photochem. Photobiol. 36: 125–132.

    Article  CAS  Google Scholar 

  53. Lakowicz, J. R., Bevan, D. R., Maliwal, B. P., Cherek, H., and Baiter, A., 1983, Synthesis and characterization of a fluorescence probe of the phase transition and dynamic properties of membranes, Biochemistry 22: 5714–5722.

    Article  CAS  Google Scholar 

  54. Weber, G., and Farris, F. J., 1979, Synthesis and spectral properties of a hydrophobic fluorescent probe: 6-Propionyl-2-(dimethylamino)naphthalene, Biochemistry 18: 3075–3078.

    Article  CAS  Google Scholar 

  55. Sire, O., Alpert, B., and Royer, C. A., 1996, Probing pH and pressure effects of the apomyoglobin heme pocket with the 2’-(N,N-dimethylamino)-6-naphthoyl-4-trans-cyclohexanoic acid fluorophore, Biophys. J. 70: 2903–2914.

    Article  CAS  Google Scholar 

  56. Prendergast, E. G., Meyer, M., Carlson, G. L., Iida, S., and Potter, J. D., 1983, Synthesis, spectral properties, and use of 6-acryloyl-2-dimethylaminonaphthalene (acrylodan), J. Biol. Chem. 258: 7541–7544.

    CAS  Google Scholar 

  57. Hendrickson, H. S., Dumdei, E. J., Batchelder, A. G., and Carlson, G. L., 1987, Synthesis of Prodan-phosphatidylcholine, a new fluorescent probe, and its interactions with pancreatic and snake venom phospholipases A2, Biochemistry 26: 3697–3703.

    Article  CAS  Google Scholar 

  58. Sandez, M. I., Suarez, A., Rios, M. A., Balo, M. C., Fernandez, E, and Lopez, C., 1996, Spectroscopic study of new fluorescent probes, Photochem. Photobiol. 64: 486–491.

    Article  CAS  Google Scholar 

  59. Viard, M., Gallay, J., Vincent, M., Meyer, O., Robert, B., and Paternostre, M., 1997, Laurdan solvatochromism: Solvent dielectric relaxation and intramolecular excited-state reaction, Biophys. J. 73: 2221–2234.

    Article  CAS  Google Scholar 

  60. Zurawsky, W. P., and Scarlata, S. E, 1992, Preferential solvation of 6-propionyl(N,N-dimethylamino)naphthalene in binary, polar solvent mixtures, J. Phys. Chem. 96: 6012–6016.

    Article  CAS  Google Scholar 

  61. Ilich, P., and Prendergast, F. G., 1989, Singlet adiabatic states of solvated PRODAN: A semiempirical molecular orbital study, J. Phys. Chem. 93: 4441–4447.

    Article  CAS  Google Scholar 

  62. Catalan, J., Perez, P., Laynez, J., and Blanco, E G., 1991, Analysis of the solvent effect on the photophysics properties of 6-propionyl2-(dimethylamino)naphthalene (PRODAN), J. Fluoresc. 1(4): 215223.

    Google Scholar 

  63. Parusel, A., Schneider, E W., and Köhler, G.,1997, An ab initio study on excited and ground state properties of the organic fluorescence probe PRODAN, J. Mol. Struct. (Theochem) 398–399: 341–346.

    Google Scholar 

  64. Nowak, W., Sygula, A., Adamczak, P., and Baiter, A., 1986, On the possibility of fluorescence from twisted intramolecular charge transfer states of 2-dimethylamino-6-acylnaphthalenes. A quantum-chemical study, J. Mol. Struct. 139: 13–23.

    Article  Google Scholar 

  65. Baiter, A., Nowak, W., Pawelkiewicz, W., and Kowalczyk, A., 1988, Some remarks on the interpretation of the spectral properties of Prodan, Chem. Phys. Lett. 143: 565–570.

    Article  Google Scholar 

  66. Rettig, W., and Lapouyade, R., 1994, Fluorescence probes based on twisted intramolecular charge transfer (TICT) states and other adiabatic photoreactions, in Topics in Fluorescence Spectroscopy, Volume 4: Probe Design and Chemical Sensing, J. R. Lakowicz (ed.), Plenum Press, New York, pp. 109–149.

    Google Scholar 

  67. Comeli(3en, C., and Rettig, W., 1994, Unusual fluorescence red shifts in TICT-forming boranes, J. Fluoresc. 4 (1): 71–74.

    Google Scholar 

  68. Vollmer, E, Rettig, W., and Birckner, E., 1994, Photochemical mechanisms producing large fluorescence Stokes’ shifts, J. Fluorese. 4 (1): 65–69.

    Article  CAS  Google Scholar 

  69. Rotkiewicz, K., Grellmann, K. H., and Grabowski, Z. R., 1973, Reinterpretation of the anomalous fluorescence of p-N,N-dimethylamino-benzonitrile, Chem. Phys. Lett. 19: 315–318.

    Article  CAS  Google Scholar 

  70. Grabowski, Z. R., Rotkiewicz, K., and Siemiarczuk, A., 1979, Dual fluorescence of donor—acceptor molecules and the twisted intramolecular charge transfer TICT states, J. Lumin. 18: 420–424.

    Article  Google Scholar 

  71. Belletête, M., and Durocher, G., 1989, Conformational changes upon excitation of dimethylamino para-substituted 3H-indoles. Viscosity and solvent effects, J. Phys. Chem. 93: 1793–1799.

    Article  Google Scholar 

  72. Jones, G., Jackson, W. R., Choi, C.-Y., and Bergmark, W. R., 1985, Solvent effects on emission yield and lifetime for coumarin laser dyes. Requirements for a rotatory decay mechanism, J. Phys. Chem. 89: 294–300.

    Article  CAS  Google Scholar 

  73. Ayuk, A. A., Rettig, W., and Lippert, E., 1981, Temperature and viscosity effects on an excited state equilibrium as revealed from the dual fluorescence of very dilute solutions of 1-dimethylamino-4-cyanonaphthalene, Ber. Bunsenges. Phys. Chem. 85: 553–555.

    Article  CAS  Google Scholar 

  74. Cherkasov, A. S., and Dragneva, G. I., 1961, Influence of solvent viscosity on the fluorescence spectra of certain organic compounds, Opt. Spectrosc. 10: 238–241.

    Google Scholar 

  75. Bakhshiev, N. G., and Piterskaya, I. V., 1965, Universal molecular interactions and their effect on the electronic spectra of molecules in two-component solutions X, Opt. Spectrosc. 19: 390–395.

    Google Scholar 

  76. Macgregor, R. B., and Weber, G., 1981, Fluorophores in polar media. Spectral effects of the Langevin distribution of electrostatic interactions, Proc. N.Y. Acad. Sci. 366: 140–154.

    Article  CAS  Google Scholar 

  77. Piterskaya, I. V., and Bakhshiev, N. G., 1963, Quantitative investigation of the temperature dependence of the absorption and fluorescence spectra of complex molecules, Bull. Acad. Sci. USSR, Phys. Ser. 27: 625–629.

    Google Scholar 

  78. Kawski, A., 1997, Thermochromic shifts of electronic spectra and excited state dipole moments, Asian J. Spectrosc. 1: 27–38.

    CAS  Google Scholar 

  79. Lakowicz, J. R., Cherek, H., Lazcko, G., and Gratton, E., 1984, Time-resolved fluorescence emission spectra of labeled phospholipid vesicles. As observed using multi-frequency phase-modulation fluorometry, Biochim. Biophys. Acta 777: 183–193.

    Article  CAS  Google Scholar 

  80. Marriott, G., Zechel, K., and Jovin, T. M., 1988, Spectroscopic and functional characterization of an environmentally sensitive fluorescent actin conjugate, Biochemistry 27: 6214–6220.

    Article  CAS  Google Scholar 

  81. Richieri, G. V, Ogata, R. T., and Kleinfeld, A. M., 1992, A fluorescently labeled intestinal fatty acid binding protein, J. Biol. Chem. 267: 23495–23501.

    CAS  Google Scholar 

  82. Richieri, G. V., And, A., and Kleinfeld, A. M., 1993, Interactions of long-chain fatty acids and albumin: Determination of free fatty acid levels using the fluorescent probe ADIFAB, Biochemistry 32: 75747580.

    Google Scholar 

  83. Richieri, G. V., Ogata, R. T., and Kleinfeld, A. M., 1996, Kinetics of fatty acid interactions with fatty acid binding proteins from adipocyte, heart, and intestine, J. Biol. Chem. 271: 11291–11300.

    Article  CAS  Google Scholar 

  84. Richieri, G. V., Ogata, R. T., and Kleinfeld, A. M., 1996, Thermodynamic and kinetic properties of fatty acid interactions with rat liver fatty acid-binding protein, J. Biol. Chem. 271: 31068–31074.

    Article  CAS  Google Scholar 

  85. Richieri, G. V, Ogata, R. T., and Kleinfeld, A. M., 1994, Equilibrium constants for the binding of fatty acids with fatty acid-binding proteins from adipocyte, intestine, heart and liver measured with the fluorescent probe ADIFAB, J. Biol. Chem. 269: 23918–23930.

    CAS  Google Scholar 

  86. Richieri, G. V, and Kleinfeld, A. M., 1995, Unbound free fatty acid levels in human serum, J. Lipid Res. 36: 229–240.

    CAS  Google Scholar 

  87. Kleinfeld, A. M., Prothro, D., Brown, D. L., Davis, R. C., Richieri, G. V, and DeMaria, A., 1996, Increases in serum unbound free fatty acid levels following coronary angioplasty, Am. J. Cardiol. 78: 1350–1354.

    Article  CAS  Google Scholar 

  88. LaPorte, D. C., Wierman, B. M., and Storm, D. R., 1980, Calcium-induced exposure of a hydrophobic surface on calmodulin, Biochemistry 19: 3814–3819.

    Article  CAS  Google Scholar 

  89. Wang, Y., Ikeda, T., Ikeda, H., Ueno, A., and Toda, E, 1994, Dansyl-(3-cyclodextrins as fluorescent sensors responsive to organic compounds, Bull. Chem. Soc. Jpn. 67: 1598–1607.

    Article  CAS  Google Scholar 

  90. Nagata, K., Furuike, T., and Nishimura, S.-I., 1995, Fluorescence-labeled synthetic glycopolymers: A new type of sugar ligands of lectins, J. Biochem. (Tokyo) 118: 278–284.

    CAS  Google Scholar 

  91. Perochon, E., Lopez, A., and Tocanne, J. E, 1992, Polarity of lipid bilayers. A fluorescence investigation, Biochemistry 31: 7672–7682.

    Article  CAS  Google Scholar 

  92. BioProbes 25, New Products and Applications, Molecular Probes, Inc., Eugene, Oregon, May 1997.

    Google Scholar 

  93. Diwu, Z., Lu, Y, Zhang, C., Kalubert, D. H., and Haugland, R. P., 1997, Fluorescent molecular probes II. The synthesis, spectral properties and use of fluorescent solvatochromic DapoxylTlGt dyes, Photochem. Photobiol. 66: 424–431.

    Article  CAS  Google Scholar 

  94. Gryczynski, I., Wiczk, W., Lakowicz, J. R., and Johnson, M. L., 1989, Decay time distribution analysis of Yt-base in benzene-methanol mixtures, J. Photochem. Photobiol. B: Biol. 4: 159–170.

    Article  CAS  Google Scholar 

  95. Gryczynski, I., Wiczk, W., Johnson, M. L., and Lakowicz, J. R., 1988, Lifetime distributions and anisotropy decays of indole fluorescence in cyclohexane/ethanol mixtures by frequency-domain fluorometry, Biophys. Chem. 32: 173–185.

    Article  CAS  Google Scholar 

  96. Gryczynski, I., unpublished observations.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lakowicz, J.R. (1999). Solvent Effects on Emission Spectra. In: Principles of Fluorescence Spectroscopy. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3061-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3061-6_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-3063-0

  • Online ISBN: 978-1-4757-3061-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics