Skip to main content

Abstract

Fluorescence sensing of chemical and biochemical analytes is an active area of research.1–7 This research is being driven by the desire to eliminate radioactive tracers, which are costly to use and dispose of. Additionally, there is a need for rapid and low-cost testing methods for a wide range of clinical, bioprocess, and environmental applications. During the past decade, we have witnessed the introduction of numerous methods based on high-sensitivity fluorescence detection, including DNA sequencing, DNA fragment analysis, fluorescence staining of gels following electrophoretic separation, and a variety of fluorescence immunoassays. Historically, one can trace many of these analytical applications to the classic reports by Undenfriend and co-workers,8,9 which anticipated many of today’s applications of fluorescence. More recent monographs have summarized the numerous analytical applications of fluorescence.10–14

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Miller, J. N., and Birch, D. J. S. (eds.), 1997, 4th International Conference on Methods and Applications of Fluorescence Spectroscopy, J. Fluoresc. 7(1):1S-2465.

    Google Scholar 

  2. Wolfbeis, O. S. (ed.), 1993, Proceedings of the 1st European Conference on Optical Chemical Sensors and Biosensors, Europt(R)ode I, Sensors Actuators B 11. 565 pp.

    Google Scholar 

  3. Baldini, E. (ed.), 1995, Proceedings of the 2nd European Conference on Optical Chemical Sensors and Biosensors, Europt(R)ode I1, Sensors Actuators B 29. 439 pp.

    Google Scholar 

  4. Kunz, R. E. (ed.), 1997, Proceedings of the 3rd European Conference on Optical Chemical Sensors and Biosensors, Part I—Plenary and Parallel Sessions; Part II—Poster Sessions, Europt(R)ode III, Sensors Actuators B 38. 1–188 and 189–468.

    Google Scholar 

  5. Thompson, R. B. (ed.), 1997, Advances in Fluorescence Sensing Technology III, Proc. SPIE 2980.

    Google Scholar 

  6. Lakowicz, J. R. (ed.), 1995, Advances in Fluorescence Sensing Technology II, Proc. SPIE 2388.

    Google Scholar 

  7. Wolfbeis, O. S. (ed.), 1991, Biomedical applications of fiber optic chemical sensors, in Fiber Optic Chemical Sensors and Biosensors, Vol. II, O. S. Wolfbeis (ed.), CRC Press, Boca Raton, Florida, pp. 267–300.

    Google Scholar 

  8. Undenfriend, S., 1969, Fluorescence Assay in Biology and Medicine, Vol. II, Academic Press, New York. See also Vol. 1, 1962.

    Google Scholar 

  9. Duggan, D. E., Bowman, R. L., Brodie, B., and Undenfriend, S., 1957, A spectrophotofluorometric study of compounds ofbiological interest, Arch. Biochem. Biophys. 68: 1–14.

    CAS  Google Scholar 

  10. Ichinose, N., Schwedt, G., Schnepel, F. M., and Adachi, K., 1987, Fluorometric Analysis in Biomedical Chemistry, John Wiley & Sons, New York.

    Google Scholar 

  11. Lakowicz, J. R. (ed.), 1994, Topics in Fluorescence Spectroscopy, Volume 4, Probe Design and Chemical Sensing, Plenum Press, New York.

    Google Scholar 

  12. Szmacinski, H., and Lakowicz, J. R., 1994, Lifetime-based sensing, in Topics in Fluorescence Spectroscopy, Volume 4, Probe Design and Chemical Sensing, J. R. Lakowicz (ed.), Plenum Press, New York, pp. 295–334.

    Google Scholar 

  13. Schulman, S. G. (ed.), 1993, Molecular Luminescence Spectroscopy, Part III: Methods and Applications, John Wiley & Sons, New York. See also Part II, 1988, and Part I, 1985.

    Google Scholar 

  14. Czarnik, A. W. (ed.), 1993, Fluorescent Chemosensors for Ion and Molecule Recognition, American Chemical Society, Washington, D.C.

    Google Scholar 

  15. Kieslinger, D., Draxler, S., Trznadel, K., and Lippitsch, M. E., 1997, Lifetime-based capillary waveguide sensor instrumentation, Sensors Actuators B 38–39: 300–304.

    Google Scholar 

  16. Pease, A. C., Solas, D., Sullivan, E. J., Cronin, M. T., Holmes, C. P., and Fodor, S. P. A., 1994, Light-generated oligonucleotide arrays for rapid DNA sequence analysis, Proc. Natl. Acad. Sci. U.S.A. 91: 5022–5026.

    CAS  Google Scholar 

  17. Lipshutz, R. J., Morris, D., Chee, M, Hubbell, E., Kozal, M. J., Shah, N., Shen, N., Yang, R., and Fodor, S. P. A., 1995, Using oligonucleotide probe arrays to access genetic diversity, Bio Techniques 19 (3): 442–447.

    CAS  Google Scholar 

  18. Mooney, J. E, Hunt, A. J., McIntosh, J. R., Liberko, C. A., Walba, D. M., and Rogers, C. T., 1996, Patterning of functional antibodies and other proteins by photolithography of silane monolayers, Proc. Natl. Acad. Sci. U.S.A. 93: 12287–12291.

    CAS  Google Scholar 

  19. Bhatia, S. K., Teixeira, J. L., Anderson, M., Schriver-Lake, L. C., Calvert, J. M., Georger, J. H., Hickman, J. J., Dulcey, C. S., Schoen, P. E., and Ligler, F S., 1993, Fabrication of surfaces resistant to protein adsorption and application to two-dimensional protein patterning, Anal. Biochem. 208: 197–205.

    CAS  Google Scholar 

  20. Kricka, L. J., Skogerboe, K. J., Hage, D. A., Schoeff, L., Wang, J., Sokol, L. J., Chan, D. W., Ward, K. M., and Davis, K. A., 1997, Clinical chemistry, Anal. Chem. 69: 165R - 229R.

    Google Scholar 

  21. Lippitsch, M. E., Draxler, S., and Kieslinger, D., 1997, Luminescence lifetime-based sensing: New materials, new devices, Sensors Actuators B 38–39: 96–102.

    Google Scholar 

  22. Richards-Kortum, R., and Sevick-Muraca, E., 1996, Quantitative optical spectroscopy for tissue diagnosis, Annu. Rev. Phys. Chem. 47: 555–606.

    CAS  Google Scholar 

  23. Gouin, J. E, Baros, F, Birot, D., and Andre, J. C., 1997, A fibre-optic oxygen sensor for oceanography, Sensors Actuators B 38–39: 40 1406.

    Google Scholar 

  24. Valeur, B., 1994, Principles of fluorescent probe design for ion recognition, in Topics in Fluorescence Spectroscopy, Volume 4, Probe Design and Chemical Sensing, J. R. Lakowicz (ed.), Plenum Press, New York, pp. 21–48.

    Google Scholar 

  25. Rettig, W., and Lapouyade, R., 1994, Fluorescence probes based on twisted intramolecular charge transfer (TICT) states and other adiabatic photoreactions, in Topics in Fluorescence Spectroscopy, Volume 4, Probe Design and Chemical Sensing, J. R. Lakowicz (ed.), Plenum Press, New York, pp. 109–149.

    Google Scholar 

  26. Czarnik, A. W., 1994, Principles of fluorescent probe design for ion recognition, in Topics in Fluorescence Spectroscopy, Volume 4: Probe Design and Chemical Sensing, J. R. Lakowicz (ed.), Plenum Press, New York, pp. 49–70.

    Google Scholar 

  27. Fabbrizzi, L., and Poggi, A., 1995, Sensors and switches from supramolecular chemistry, Chem. Soc. Rev. 24: 197–202.

    CAS  Google Scholar 

  28. Bryan, A. J., Prasanna de Silva, A., de Silva, S. A., Dayasiri Rupasinghe, A. D., and Samankumara Sandanayake, K. R. A., 1989, Photo-induced electron transfer as a general design logic for fluorescent molecular sensors for cations, Biosensors 4:169–179.

    Google Scholar 

  29. Demas, J. N., and DeGraff, B. A., 1994, Design and applications of highly luminescent transition metal complexes, in Topics in Fluorescence Spectroscopy, Volume 4, Probe Design and Chemical Sensing, J. R. Lakowicz (ed.), Plenum Press, New York, pp. 71–107.

    Google Scholar 

  30. Bacon, J. R., and Demas, J. N., 1987, Determination of oxygen concentrations by luminescence quenching of a polymer immobilized transition metal complex, Anal. Chem. 59: 2780–2785.

    CAS  Google Scholar 

  31. Wolfbeis, O. S., 1991, Oxygen sensors, in Fiber Optic Chemical Sensors and Biosensors, Vol. II, O. S. Wolfbeis (ed.), CRC Press, Boca Raton, Florida, pp. 19–53.

    Google Scholar 

  32. Mills, A., and Williams, F C., 1997, Chemical influences on the luminescence of ruthenium diimine complexes and its response to oxygen, Thin Solid Films 306: 163–170.

    CAS  Google Scholar 

  33. Lippitsch, M. E., Pusterhofer, J., Leiner, M. J. P., and Wolfbeis, O. S., 1988, Fibre-optic oxygen sensor with the fluorescence decay time as the information carrier, Anal. Chim. Acta 205: 1–6.

    CAS  Google Scholar 

  34. Draxler, S., Lippitsch, M. E., Klimant, I., Kraus, H., and Wolfbeis, O. S., 1995, Effects of polymer matrices on the time-resolved luminescence of a ruthenium complex quenched by oxygen, J. Phys. Chem. 99: 3162–3167.

    CAS  Google Scholar 

  35. Lakowicz, J. R., Johnson, M. L, Lederer, W. J., Szmacinski, H., Nowaczyk, K., Malak, H., and Berndt, K. W., 1992, Fluorescence lifetime sensing generates cellular images, Laser Focus World 28 (5): 60–80.

    CAS  Google Scholar 

  36. Holst, G., Glud, R. N., Kuhl, M., and Klimant, I., 1997, A microoptode array for fine-scale measurement of oxygen distribution, Sensors Actuators B 38–39: 122–129.

    Google Scholar 

  37. Hartmann, P., Ziegler, W., Holst, G., and Lubbers, D. W., 1997, Oxygen flux fluorescence lifetime imaging, Sensors Actuators B 38–39: 110–115.

    Google Scholar 

  38. Cox, M. E., and Dunn, B., 1985, Detection of oxygen by fluorescence quenching, Appl. Opt. 24: 2114–2120.

    CAS  Google Scholar 

  39. Charlesworth, J. M., 1994, Optical sensing of oxygen using phosphorescence quenching, Sensors Actuators B 22: 1–5.

    Google Scholar 

  40. Papkovsky, D. B., Ponomarev, G. V., Trettnak, W., and O’Leary, P., 1995, Phosphorescent complexes of porphyrin ketones: Optical properties and applications to oxygen sensing, Anal. Chem. 67: 4112–4117.

    CAS  Google Scholar 

  41. Xu, W, Kneas, K. A., Demas, J. N., and DeGraff, B. A., 1996, Oxygen sensors based on luminescence quenching of metal complexes: Osmium complexes suitable for laser diode excitation, Anal. Chem. 68: 2605–2609.

    CAS  Google Scholar 

  42. Bambot, S. B., Rao, G., Romauld, M., Carter, G. M., Sipior, J., Terpetschnig, E., and Lakowicz, J. R., 1995, Sensing oxygen through skin using a red diode laser and fluorescence lifetimes, Biosensors Bioelectron. 10: 643–652.

    CAS  Google Scholar 

  43. Xu, W., McDonough, R. C., Langsdorf, B., Demas, J. N., and DeGraff, B. A., 1994, Oxygen sensors based on luminescence quenching. Interactions of metal complexes with the polymer supports, Anal Chem. 66: 4133–4141.

    CAS  Google Scholar 

  44. Hartmann, P., and Leiner, M. J. P., 1995, Luminescence quenching behavior of an oxygen sensor based on a Ru(II) complex dissolved in polystyrene, Anal. Chem. 6: 88–93.

    Google Scholar 

  45. Wolfbeis, O. S., and Urbano, E., 1983, Eine fluorimetrische, schwer-metallfreie methode zur analyse von chlor, brom and iod in organischen materialien, Fresenius’Z Anal. Chem. 314: 577–581.

    CAS  Google Scholar 

  46. Insley, N. E, and Verkman, A. S.,1987, Membrane chloride transport measured using a chloride-sensitive fluorescent probe, Biochem. 26: 1215–1219.

    Google Scholar 

  47. Verkman, A. S., 1990, Development and biological applications of chloride-sensitive fluorescent indicators, Am. J. Physiol. 253: C375 - C388.

    Google Scholar 

  48. Verkman, A. S., Sellers, M. C., Chao, A. C., Leung, T., and Ketcham, R., 1989, Synthesis and characterization of improved chloride-sensitive fluorescent indicators for biological applications, Anal. Biochem. 178: 355–361.

    CAS  Google Scholar 

  49. Biwersi, J., Tulk, B., and Verkman, A. S., 1994, Long-wavelength chloride-sensitive fluorescent indicators, Anal. Biochem. 219: 139143.

    Google Scholar 

  50. Orosz, D. E., and Carlid, K. D., 1992, A sensitive new fluorescence assay for measuring proton transport across liposomal membranes, Anal. Biochem. 210: 7–15.

    Google Scholar 

  51. Chao, A. C., Dix, J. A., Sellers, M. C., and Verkman, A. S., 1989, Fluorescence measurement of chloride transport in monolayer cultured cells. Mechanisms of chloride transport in fibroblasts, Biophys. J. 56: 1071–1081.

    CAS  Google Scholar 

  52. Wolfbeis, O. S., and Sharma, A., 1988, Fibre-optic fluorosensor for sulphur dioxide, Anal. Chico. Acta 208: 53–58.

    CAS  Google Scholar 

  53. Sharma, A., Draxler, S., and Lippitsch, M. E., 1992, Time-resolved spectroscopy of the fluorescence quenching of a donor—acceptor pair by halothane, Appl. Phys. B 54: 309–312.

    Google Scholar 

  54. Omann, G. M., and Lakowicz, J. R., 1982, Interactions of chlorinated hydrocarbon insecticides with membranes, Biochim. Biophys. Acta 684: 83–95.

    CAS  Google Scholar 

  55. Vanderkooi, J. M., Wright, W. W., and Erecinska, M., 1994, Nitric oxide diffusion coefficients in solutions, proteins and membranes determined by phosphorescence, Biochim. Biophys. Acta 1207: 249–254.

    CAS  Google Scholar 

  56. Denicola, A., Souza, J. M., Radi, R., and Lissi, E., 1996, Nitric oxide diffusion in membranes determined by fluorescence quenching, Arch. Biochem. Biophys. 328: 208–212.

    CAS  Google Scholar 

  57. Jordan, D. M., Walt, D. R., and Milanovich, F. P., 1987, Physiological pH fiber-optic chemical sensor based on energy transfer, Anal. Chem. 59: 437–439.

    CAS  Google Scholar 

  58. Lakowicz, J. R., Szmacinski, H., and Karakelle, M., 1993, Optical sensing of pH and pCO2 using phase-modulation fluorimetry and resonance energy transfer, Anal. Chim. Acta 272: 179–186.

    CAS  Google Scholar 

  59. Sipior, J., Bambot, S., Romauld, M., Carter, G. M., Lakowicz, J. R., and Rao, G., 1995, A lifetime-based optical CO2 gas sensor with blue or red excitation and Stokes or anti-Stokes detection, Anal. Biochem. 227: 309–318.

    CAS  Google Scholar 

  60. Chang, Q., Sipior, J., Lakowicz, J. R., and Rao, G., 1995, A lifetime-based fluorescence resonance energy transfer sensor for ammonia, Anal. Biochem. 232: 92–97.

    CAS  Google Scholar 

  61. Mills, A., Chang, Q., and McMurray, N., 1992, Equilibrium studies on colorimetric plastic film sensors for carbon dioxide, Anal. Chem. 64: 1383–1389.

    CAS  Google Scholar 

  62. Wolfbeis, O. S., Reisfeld, R., and Oehme, I., 1996, Sol-gels and chemical sensors, Struct. Bonding 85: 51–98.

    CAS  Google Scholar 

  63. Avnir, D., Braun, S., and Ottolenghi, M., 1992, A review of novel photoactive, optical, sensing and bioactive materials. A review. ACS Symp. Ser. 499: 384–404.

    CAS  Google Scholar 

  64. Lakowicz, J. R., 1994, Emerging biomedical applications of time-resolved fluorescence spectroscopy, in Topics in Fluorescence Spectroscopy, Volume 4, Probe Design and Chemical Sensing, J. R. Lakowicz (ed.), Plenum Press, New York, pp. 1–9.

    Google Scholar 

  65. Schultz, J. S., and Sims, G., 1979, Affinity sensors for individual metabolites, BiotechnoL Bioeng. Symp. 9: 65–71.

    Google Scholar 

  66. Schultz, J., Mansouri, S., and Goldstein, I. J., 1982, Affinity sensor: A new technique for developing implantable sensors for glucose and other metabolites, Diabetes Care 5 (3): 245–253.

    CAS  Google Scholar 

  67. Meadows, D., and Schultz, J. S., 1988, Fiber-optic biosensors based on fluorescence energy transfer, Talanta 35 (2): 145–150.

    CAS  Google Scholar 

  68. Lakowicz, J. R., and Maliwal, B. P., 1993, Optical sensing of glucose using phase-modulation fluorometry, Anal. Chim. Acta 271: 155164.

    Google Scholar 

  69. Tolosa, L., Szmacinski, H., Rao, G., and Lakowicz, J. R., 1997, Lifetime-based sensing of glucose using energy transfer with a long lifetime donor, Anal. Biochem. 250: 102–108.

    CAS  Google Scholar 

  70. Tolosa, L., Malak, H., Rao, G., and Lakowicz, J. R., 1997, Optical assay for glucose based on the luminescence decay time of the long wavelength dye Cy5T’, Sensors Actuators 45: 93–99.

    Google Scholar 

  71. He, H., Li, H., Mohr, G., Kovacs, B., Werner, T., and Wolfbeis, O. S., 1993, Novel type of ion-selective fluorosensor based on the inner filter effect: An optrode for potassium, Anal. Chem. 65:123–127.

    Google Scholar 

  72. Roe, J. N., Szoka, E C., and Verkman, A. S., 1989, Optical measurement of aqueous potassium concentration by a hydrophobic indicator in lipid vesicles, Biophys. Chem. 33: 295–302.

    CAS  Google Scholar 

  73. Roe, J. N., Szoka, F. C., and Verkman, A. S., 1990, Fibre optic sensor for the detection of potassium using fluorescence energy transfer, Analyst 115: 353–368.

    CAS  Google Scholar 

  74. Mahutte, C. K., 1994, Continuous intra-arterial blood gas monitoring, Intensive Care Med. 20: 85–86.

    CAS  Google Scholar 

  75. Shapiro, B. A., Mahutte, C. K., Cane, R. D., and Gilmour, I. J., 1993, Clinical performance of a blood gas monitor: A prospective, multicenter trial, Crit. Care Med. 21 (4): 487–494.

    CAS  Google Scholar 

  76. Yafuso, M., Arick, S. A., Hansmann, D., Holody, M., Miller, W. W., Yan, C. F., and Mahutte, K., 1989, Optical pH measurements in blood, Proc. SPIE 1067: 37–43.

    Google Scholar 

  77. Vurek, G. G., Feustel, P. J., and Severinghaus, J. W., 1983, A fiber optic pCO2 sensor, Ann. Biomed. Eng. 11: 499–510.

    CAS  Google Scholar 

  78. Mahutte, C. K., Holody, M., Maxwell, T. P., Chen, P. A., and Sasse, S. A., 1994, Development of a patient-dedicated, on-demand, blood gas monitor, Am. J. Respir. Crit. Care Med. 149: 852–859.

    CAS  Google Scholar 

  79. Mahutte, C. K., Sasse, S. A., Chen, P. A., and Holody, M., 1994, Performance of a patient-dedicated, on-demand blood gas monitor in medical ICU patients, Am. J. Respir. Crit. Care Med. 150: 865–869.

    Google Scholar 

  80. Opitz, N., and Lubbers, D. W., 1987, Theory and development of fluorescence-based optochemical oxygen sensors: Oxygen optodes, Int. AnesthesioL Clin. 25 (3): 177–197.

    CAS  Google Scholar 

  81. Ohkuma, S., and Poole, B., 1978, Fluorescence probe measurement of the intralysosomal pH in living cells and the perturbation of pH by various agents, Pmc. Natl. Acad. Sci. U.S.A. 5: 3327–3331.

    Google Scholar 

  82. Thomas, J. A., Buchsbaum, R. N., Zimniak, A., and Racker, E., 1979, Intracellular pH measurements in Ehrlich ascites tumor cells utilizing spectroscopic probes generated in situ, Biochemistry 18: 2210–2218.

    CAS  Google Scholar 

  83. Munkholm, C., Walt, D. R., and Milanovich, E P., 1988, A fiber-optic sensor for CO2 measurement, Talanta 35 (2): 109–112.

    CAS  Google Scholar 

  84. Kawabata, Y., Kamichika, T., Imasaka, T., and Ishibashi, N., 1989, Fiber-optic sensor for carbon dioxide with a pH indicator dispersed in a poly(ethyleneglycol) membrane, Anal. Chim. Acta 219: 223–229.

    CAS  Google Scholar 

  85. Yguerabide, J., Talavera, E., Alvarez, J. M., and Quintero, B., 1994, Steady-state fluorescence method for evaluating excited-state proton reactions: Application to fluorescein, Photochem. Photobiol. 60: 435–441.

    CAS  Google Scholar 

  86. Haugland, R. P., 1996, Chapter 23, in Handbook of Fluorescent Probes and Research Chemicals, Molecular Probes, Eugene, Oregon, pp. 551–561.

    Google Scholar 

  87. Rink, T. J., Tsien, R. Y., and Pozzan, T., 1982, Cytoplasmic pH and free Mgt+ in lymphocytes, J. Cell Biol. 95: 189–196.

    CAS  Google Scholar 

  88. Clement, N. R., and Gould, J. M., 1981, Pyranine (8-hydroxy-1,3,6pyrenetrisulfonate) as a probe of internal aqueous hydrogen ion concentration in phospholipid vesicles, Biochemistry 20: 1534–1538.

    CAS  Google Scholar 

  89. Wolfbeis, O. S., Fürlinger, E., Kroneis, H., and Marsoner, H., 1983, Fluorimetric analysis. 1. A study on fluorescent indicators for measuring near neutral (“physiological”) pH-values, Fresenius’Z Anal. Chem. 314: 119–124.

    CAS  Google Scholar 

  90. Schulman, S. G., Chen, S., Bai, F., Leiner, M. J. P., Weis, L., and Wolfbeis, O. S., 1995, Dependence of the fluorescence of immobilized 1-hydroxypyrene-3,6,8-trisulfonate on sodium pH: Extension of the range of applicability of a pH fluorosensor, Anal Chim. Acta 304: 165–170.

    CAS  Google Scholar 

  91. Zhujun, H., and Seitz, W. R., 1984, A fluorescence sensor for quantifying pH in the range from 6.5 to 8.5, Anal. Chim. Acta 160: 47–55.

    Google Scholar 

  92. Uttamlal, M., and Walt, D. R., 1995, A fiber-optic carbon dioxide sensor for fermentation monitoring, BioTechnology 13: 597–601.

    CAS  Google Scholar 

  93. Whitaker, J. E., Haugland, R. P., and Prendergast, F. G., 1991, Spectral and photophysical studies of benzo[c]xanthene dyes: Dual emission pH sensors, Anal. Biochem. 194: 330–344.

    CAS  Google Scholar 

  94. Szmacinski, H., and Lakowicz, J. R., 1993, Optical measurements of pH using fluorescence lifetimes and phase-modulation fluorometry, Anal. Chem. 65: 1668–1674.

    CAS  Google Scholar 

  95. Srivastava, A., and Krishnamoorthy, G., 1997, Time-resolved fluorescence microscopy could correct for probe binding while estimating intracellular pH, Anal. Biochem. 249: 140–146.

    CAS  Google Scholar 

  96. Wolfbeis, O. S., Rodriguez, N. V., and Werner, T., 1992, LED-compatible fluorosensor for measurement of near-neutral pH values, Mikrochim. Acta 108: 133–141.

    CAS  Google Scholar 

  97. Zen, J-M., and Patonay, G., 1991, Near-infrared fluorescence probe for pH determination, Anal. Chem. 63: 2934–2938.

    CAS  Google Scholar 

  98. Boyer, A. E., Devanathan, S., Hamilton, D., and Patonay, G., 1992, Spectroscopic studies of a near-infrared absorbing pH sensitive carbocyanine dye, Talanta 39 (5): 505–510.

    CAS  Google Scholar 

  99. Wolfbeis, O. S., and Marhold, H., 1987, A new group of fluorescent pH-indicators for an extended pH-range, Anal. Chem. 327: 347–350.

    CAS  Google Scholar 

  100. Murtaza, Z., Chang, Q., Rao, G., Lin, H., and Lakowicz, J. R., 1997, Long-lifetime metal—ligand pH probes, Anal. Biochem. 247: 216–222.

    CAS  Google Scholar 

  101. de Silva, A. P., Nimal Gunaratne, H. Q., and Rice, T. E., 1996, Proton-controlled switching of luminescence in lanthanide complexes in aqueous solution: pH sensors based on long-lived emission, Angew. Chem. Int. Ed. Engl. 35: 2116–2118.

    Google Scholar 

  102. Bryan, A. J., de Silva, P., de Silva, S. A., Rupasinghe, R. A. D. D., and Sandanayake, K. R. A. S., 1989, Photo-induced electron transfer as a general design logic for fluorescent molecular sensors for cations, Biosensors 4: 169–179.

    CAS  Google Scholar 

  103. de Silva, A. P., Gunaratne, H. Q. N., Habib-Jiwan, J.-L, McCoy, C. P., Rice, T. E., and Soumillion, J.-P., 1995, New fluorescent model compounds for the study of photoinduced electron transfer: The influence of a molecular electric field in the excited state, Angew. Chem. Int. Ed. Engl. 34: 1728–1731.

    Google Scholar 

  104. Akkaya, E. U., Huston, M. E., and Czamik, A. W., 1990, Chelation-enhanced fluorescence of anthrylazamacrocycle conjugate probes in aqueous solution, J. Am. Chem. Soc. 112: 3590–3593.

    CAS  Google Scholar 

  105. Fages, F., Desvergene, J. P., Bouas-Laurent, H., Marsau, P., Lehn, J.-M., Kotzyba-Hibert, F., Albrecht-Gary, A. M., and Al-Joubbeh, M., 1989, Anthraceno-cryptands: A new class of cation-complexing macrobicyclic fluorophores, J. Am. Chem. Soc. 111: 8672–8680.

    CAS  Google Scholar 

  106. de Silva, A. P., and de Silva, S. A., 1986, Time-resolved fluorescence microscopy could correct for probe binding while estimating intracellular pH, Anal. Biochem. 1986: 1709–1710.

    Google Scholar 

  107. David-Duflho, M., Montenay-Garestier, T., and Devynck, M.-A., 1989, Fluorescence measurements of free Cat+ concentration in human erythrocytes using the CaZ+ indicator Fura-2, Cell Calcium 9: 167–179.

    Google Scholar 

  108. Zhujun, H., and Seitz, W. R., 1984, A fluorescence sensor for quantifying pH in the range from 6.5 to 8.5, Anal. Chim. Acta 160: 47–55.

    Google Scholar 

  109. Hirshfield, K. M., Toptygin, D., Packard, B. S., and Brand, L., 1993, Dynamic fluorescence measurements of two-state systems: Applications to calcium-chelating probes, Anal. Biochem. 209: 209–218.

    CAS  Google Scholar 

  110. Tolosa, L., Szmacinski, H., Rao, G., and Lakowicz, J. R., 1997, Lifetime-based sensing of glucose using energy transfer with a long lifetime donor, Anal. Biochem. 250: 102–108.

    CAS  Google Scholar 

  111. Chao, A. C., Dix, J. A., Sellers, M. C., and Verkman, A. S., 1989, Fluorescence measurement of chloride transport in monolayer cultured cells. Mechanisms of chloride transport in fibroblasts, Biophys. J. 56: 1071–1081.

    CAS  Google Scholar 

  112. Illner, H., McGuigan, J. A. S., and Luthi, D., 1992, Evaluation of mag-fura-5, the new fluorescent indicator for free magnesium measurements, Eur. J. PhysioL, 422: 179–184.

    CAS  Google Scholar 

  113. Kricka, L. J., Skogerboe, K. J., Hage, D. A., Schoeff, L., Wang, J., Sokol, L. J., Chan, D. W., Ward, K. M., and Davis, K. A., 1997, Clinical chemistry, Anal. Chem. 69: 165R - 229R.

    Google Scholar 

  114. Lippitsch, M. E., Draxler, S., and Kieslinger, D., 1997, Luminescence lifetime-based sensing: New materials, new devices, Sensors Actuators B 38–39: 96–102.

    Google Scholar 

  115. Bright, F. V., and McCown, L. B., 1985, Homogeneous immunoassay of phenobarbital by phase-resolved fluorescence spectroscopy, Talanta 32 (1): 15–18.

    CAS  Google Scholar 

  116. Dandliker, W. B., and de Saussure, V. A., 1970, Fluorescence polarization in immunochemistry, Immunochemistry 7: 799–828.

    CAS  Google Scholar 

  117. Lipshutz, R. J., Morris, D., Chee, M, Hubbell, E., Kozal, M. J., Shah, N., Shen, N., Yang, R., and Fodor, S. P. A., 1995, Using oligonucleotide probe arrays to access genetic diversity, Bio Techniques 19 (3): 442–447.

    CAS  Google Scholar 

  118. Mooney, J. E, Hunt, A. J., McIntosh, J. R., Liberko, C. A., Walba, D. M., and Rogers, C. T., 1996, Patterning of functional antibodies and other proteins by photolithography of silane monolayers, Proc. Natl. Acad. Sci. U.S.A. 93: 12287–12291.

    CAS  Google Scholar 

  119. Morris, S. J., Wiegmann, T. B., Welling, L. W., and Chronwall, B. M., 1994, Rapid simultaneous estimation of intracellular calcium and pH, Methods Cell Biol. 40: 183–220.

    CAS  Google Scholar 

  120. Miyawaki, A., Llopis, J., Heim, R., McCaffery, J. M., Adams, J. A., Ikura, M., and Tsien, R. Y., 1997, Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin, Nature 388: 882–887.

    CAS  Google Scholar 

  121. Albano, C. R., Randers-Eichhorn, L., Bentley, W. E., and Rao, G., 1998, Green fluorescent protein as a real time quantitative reporter of heterogeneous protein production, Biotechnol. Prog. 14: 351–554.

    CAS  Google Scholar 

  122. Randers-Richhorn, L, Albano, C. R., Sipior, J., Bentley, W. E, and Rao, G., 1997, On-line green fluorescent protein sensor with LED excitation, Biotechnol. Bioeng. 55: 921–926.

    Google Scholar 

  123. Ichinose, N., Schwedt, G., Schnepel, F. M., and Adachi, K., 1987, Fluorometric Analysis in Biomedical Chemistry, John Wiley & Sons, New York.

    Google Scholar 

  124. Lakowicz, J. R. (ed.), 1994, Topics in Fluorescence Spectroscopy, Volume 4, Probe Design and Chemical Sensing, Plenum Press, New York.

    Google Scholar 

  125. Szmacinski, H., and Lakowicz, J. R., 1994, Lifetime-based sensing, in Topics in Fluorescence Spectroscopy, Volume 4, Probe Design and Chemical Sensing, J. R. Lakowicz (ed.), Plenum Press, New York, pp. 295–334.

    Google Scholar 

  126. Tsien, R. Y., Rink, T. J., and Poenie, M., 1985, Measurement of cytosolic free Cat+ in individual small cells using fluorescence microscopy with dual excitation wavelengths, Cell Calcium 6: 145–157.

    CAS  Google Scholar 

  127. Iatridou, H., Foukaraki, E., Kuhn, M. A., Marcus, E. M., Haugland, R. P., and Katerinopoulos, H. E., 1994, The development of a new family of intracellular calcium probes, Cell Calcium 15: 190–198.

    CAS  Google Scholar 

  128. Akkaya, E. U., and Lakowicz, J. R., 1993, Styryl-based wavelength ratiometric probes: A new class of fluorescent calcium probes with long wavelength emission and a large Stokes’ shift, Anal. Biochem. 213: 285–289.

    CAS  Google Scholar 

  129. Minta, A., Kao, J. P. Y., and Tsien, R. Y., 1989, Fluorescent indicators for cytosolic calcium based on rhodamine and fluorescein chromophores, J. BioL Chem. 264: 8171–8178.

    CAS  Google Scholar 

  130. Eberhard, M., and Erne, P., 1991, Calcium binding to fluorescent calcium indicators: Calcium green, calcium orange and calcium crimson, Biochem. Biophy. Res. Comm. 180: 209–215.

    CAS  Google Scholar 

  131. Lakowicz, J. R., Szmacinski, H., and Johnson, M. L., 1992, Calcium concentration imaging using fluorescence lifetimes and long-wavelength probes, J. Fluoresc. 2 (1): 47–62.

    CAS  Google Scholar 

  132. Hirshfield, K. M., Toptygin, D., Packard, B. S., and Brand, L., 1993, Dynamic fluorescence measurements of two-state systems: Applications to calcium-chelating probes, Anal. Biochem. 209: 209–218.

    CAS  Google Scholar 

  133. Miyoshi, N., Hara, K., Kimura, S., Nakanishi, K., and Fukuda, M., 1991, A new method of determining intracellular free Cat+ concentration using Quin-2 fluorescence, Photochem. Photobiol. 53: 415–418.

    CAS  Google Scholar 

  134. Lakowicz, J. R., Szmacinski, H., Nowaczyk, K., and Johnson, M. L., 1992, Fluorescence lifetime imaging of calcium using Quin-2, Cell Calcium 13: 131–147.

    CAS  Google Scholar 

  135. Oguz, U., and Akkaya, E. U., 1997, One-pot synthesis of a red-fluorescent chemosensor from an azacrown, phloroglucinol and squaric acid: A simple in-solution construction of a functional molecular device, Tetrahedron Lett. 38: 4509–4512.

    CAS  Google Scholar 

  136. Akkaya, E. U., and Turkyilmaz, S., 1997, A squaraine-based near IR fluorescent chemosensor for calcium, Tetrahedron Lett. 38: 4513–4516.

    CAS  Google Scholar 

  137. Wahl, M., Lucherini, M. J., and Gruenstein, E., 1990, Intracellular Cat+ measurement with Indo-1 in substrate-attached cells: Advantages and special considerations, Cell Calcium 11: 487–500.

    CAS  Google Scholar 

  138. Groden, D. L., Guan, Z., and Stokes, B. T., 1991, Determination of Fura-2 dissociation constants following adjustment of the apparent Ca-EGTA association constant for temperature and ionic strength, Cell Calcium 12: 279–287.

    CAS  Google Scholar 

  139. David-Duflho, M., Montenay-Garestier, T., and Devynck, M.-A., 1989, Fluorescence measurements of free Cat+ concentration in human erythrocytes using the CaZ+ indicator Fura-2, Cell Calcium 9: 167–179.

    Google Scholar 

  140. Hirshfield, K. M., Toptygin, D., Grandhige, G., Kim, H., Packard, B. Z., and Brand, L., 1996, Steady-state and time-resolved fluorescence measurements for studying molecular interactions: Interaction of a calcium-binding probe with proteins, Biophys. Chem. 62: 25–38.

    CAS  Google Scholar 

  141. Kao, J. P. Y., 1994, Practical aspects of measuring [CaZ+] with fluorescent indicators, Methods Cell Biol. 40: 155–181.

    CAS  Google Scholar 

  142. Morris, S. J., Wiegmann, T. B., Welling, L. W., and Chronwall, B. M., 1994, Rapid simultaneous estimation of intracellular calcium and pH, Methods Cell Biol. 40: 183–220.

    CAS  Google Scholar 

  143. Scanlon, M., Williams, D. A., and Fay, F. S., 1987, A CaZ+-insensitive form of fura-2 associated with polymorphonuclear leukocytes, J. BioL Chem. 262: 6308–6312.

    CAS  Google Scholar 

  144. Bourson, J., Pouget, J., and Valeur, B., 1993, Ion-responsive fluorescent compounds. 4. Effect of cation bonding on the photophysical properties of a coumarin linked to monoaza-and diaza-crown ethers, J. Phys. Chem. 97: 4552–4557.

    CAS  Google Scholar 

  145. Dumon, P., Jonusauskas, G., Dupuy, E, Pee, P., Rulliere, C., Letard, J. F., and Lapouyade, R., 1994, Picosecond dynamics of cationmacrocycle interactions in the excited state of an intrinsic fluorescence probe: The calcium complex of 4-(N-monoaza-15crown-5)-4’-phenylstilbene, J. Phys. Chem. 98: 10391–10396.

    CAS  Google Scholar 

  146. Letard, J.-E, Lapouyade, R., and Rettig, W., 1993, Chemical engineering of fluorescence dyes, Mol. Cryst. Liq. Cryst. 236: 41–46.

    CAS  Google Scholar 

  147. Rurack, K., Bricks, J. L., Kachkovski, A., and Resch, U., 1997, Complexing fluorescence probes consisting of various fluorophores linked to 1-aza-15-crown-5, J. Fluoresc. 7 (1): 63S - 66S.

    CAS  Google Scholar 

  148. Lohr, H.-G., and Fogtle, F., 1985, Chromo-and fluoroionophores. A new class of dye reagents, Acc. Chem. Res. 18: 65–72.

    Google Scholar 

  149. de Silva, A. P., Nimal Qunaratne, H. Q., and Maguire, G. E. M., 1994, Off—on fluorescent sensors for physiological levels of magnesium ions based on photoinduced electron transfer (PET), which also behave as photoionic OR logic gates, J. Chem. Soc., Chem. Commun. 1994: 1213–1214.

    Google Scholar 

  150. Raju, B., Murphy, E., Levy, L. A., Hall, R. D., and London, R. E., 1989, A fluorescent indicator for measuring cytosolic free magnesium, Am. J. Physiol. 256: C540–0548.

    CAS  Google Scholar 

  151. Illner, H., McGuigan, J. A. S., and Luthi, D., 1992, Evaluation of mag-fura-5, the new fluorescent indicator for free magnesium measurements, Eur. J. PhysioL, 422: 179–184.

    CAS  Google Scholar 

  152. Morelle, B., Salmon, J.-M., Vigo, J., and Viallet, P., 1993, Proton, Mgt+ and protein as competing ligands for the fluorescent probe, mag-indo-1: A first step to the quantification of intracellular Mgt+ concentration, Photochem. Photobiol. 58: 795–802.

    CAS  Google Scholar 

  153. Szmacinski, H., and Lakowicz, J. R., 1996, Fluorescence lifetime characterization of magnesium probes: Improvement of Mg2+ dynamic range and sensitivity using phase-modulation fluorometry, J. Fluoresc. 6 (2): 83–95.

    CAS  Google Scholar 

  154. James, T. D., Sandanayake, K. R. A. S., and Shinkai, S., 1994, Novel photoinduced electron-transfer sensor for saccharides based on the interaction of boronic acid and amine, J. Chem. Soc., Chem. Commun. 1994: 477–478.

    Google Scholar 

  155. Yoon, J., and Czarnik, A. W., 1992, Fluorescent chemosensors of carbohydrates. A means of chemically communicating the binding of polyols in water based on chelation-enhanced quenching, J. Am. Chem. Soc. 114: 5874–5875.

    CAS  Google Scholar 

  156. James, T. D., Sandanayake, K. R. A. S., and Shinkai, S., 1995, Chiral discrimination of monosaccharides using a fluorescent molecular sensor, Nature 74: 345–347.

    Google Scholar 

  157. Hemmila, I. A., 1992, Applications of Fluorescence in Immunoassays, John Wiley & Sons, New York.

    Google Scholar 

  158. Van Dyke, K., and Van Dyke, R. (eds.), 1990, Luminescence Immunoassay and Molecular Applications, CRC Press, Boca Raton, Florida.

    Google Scholar 

  159. Ozinskas, A. J., 1994, Principles of fluorescence immunoassay, in Topics in Fluorescence Spectroscopy, Volume 4, Probe Design and Chemical Sensing, J. R. Lakowicz (ed.), Plenum Press, New York, pp. 449–496.

    Google Scholar 

  160. Gosling, J. P., 1990, A decade of development in immunoassay methodology, Clin. Chem. 36: 1408–1427.

    CAS  Google Scholar 

  161. Davidson, R. S., and Hilchenbach, M. M., 1990, The use of fluorescent probes in immunochemistry, Photochem. Photobiol. 52: 431–438.

    CAS  Google Scholar 

  162. Vo-Dinh, T., Sepaniak, M. J., Griffin, G. D., and Alarie, J. P., 1993, Immunosensors: Principles and applications, Immunomethods 3: 85–92.

    CAS  Google Scholar 

  163. Berson, S., and Yalow, R., 1959, Quantitative aspects of the reaction between insulin and insulin-binding antibody, J. Clin. Invest. 38: 1996–2016.

    CAS  Google Scholar 

  164. Lovgren, T., Hemmila, I., Pettersson, K., and Halonen, P., 1985, Tune-resolved fluorometry in immunoassay, in Alternative Immunoassays, W. P. Collins (ed.), John Wiley & Sons, New York, pp. 203–217.

    Google Scholar 

  165. Diamandis, E. P., 1988, Immunoassays with time-resolved fluorescence spectroscopy: Principles and applications, Clin. Biochem. 21: 139–150.

    CAS  Google Scholar 

  166. Lövgren, T., and Pettersson, K., 1990, Time-resolved fluoroimmunoassay, advantages and limitations, in Luminescence Immunoassay and Molecular Applications, K. Van Dyke and R. Van Dyke (eds.), CRC Press, Boca Raton, Florida, pp. 234–250.

    Google Scholar 

  167. Khosravi, M., and Diamandis, E. E, 1987, Immunofluorometry of choriogonadotropin by time-resolved fluorescence spectroscopy, a new europium chelate as label, Clin. Chem. 33: 1994–1999.

    CAS  Google Scholar 

  168. Soini, E., 1984, Pulsed light, time-resolved fluorometric immunoassay, in Monoclonal Antibodies and New Trends in Immunoassays, C. A. Bizollon (ed.), Elsevier Science Publishers, New York, pp. 197–208.

    Google Scholar 

  169. Morrison, L. E., 1988, Time-resolved detection of energy transfer: Theory and application to immunoassays, Anal. Biochem. 174: 101–120.

    CAS  Google Scholar 

  170. Ullman, E. F., Schwarzberg, M., and Rubenstein, K. E., 1976, Fluorescent excitation transfer immunoassay: A general method for determination of antigens, J. Biol. Chem. 251: 4172–4178.

    CAS  Google Scholar 

  171. Ozinskas, A. J., Malak, H., Joshi, J., Szmacinski, H., Britz, J., Thompson, R. B., Koen, P. A., and Lakowicz, J. R., 1993, Homogeneous model immunoassay of thyroxine by phase-modulation fluorescence spectroscopy, Anal. Biochem. 213: 264–270.

    CAS  Google Scholar 

  172. Lakowicz, J. R., Maliwal, B., Ozinskas, A., and Thompson, R. B., 1993, Fluorescence lifetime energy-transfer immunoassay quantified by phase-modulation fluorometry, Sensors Actuators B 12: 6570.

    Google Scholar 

  173. Bright, F. V., and McCown, L. B., 1985, Homogeneous immunoassay of phenobarbital by phase-resolved fluorescence spectroscopy, Talanta 32 (1): 15–18.

    CAS  Google Scholar 

  174. Dandliker, W. B., and de Saussure, V. A., 1970, Fluorescence polarization in immunochemistry, Immunochemistry 7: 799–828.

    CAS  Google Scholar 

  175. Spencer, R. D., Toledo, F. B., Williams, B. T., and Yoss, N. L., 1973, Design, construction, and two applications for an automated flow-cell polarization fluorometer with digital read out: Enzyme—inhibitor (antitrypsin) assay and antigen—antibody (insulin—insulin antiserum) assay, Clin. Chem. 19: 838–844.

    CAS  Google Scholar 

  176. Kobayashi, Y., Amitani, K., Watanabe, F., and Miyai, K., 1979, Fluorescence polarization immunoassay for cortisol, Clin. Chim. Acta 92: 241–247.

    CAS  Google Scholar 

  177. Cox, H., Whitby, M., Nimmo, G., and Williams, G., 1993, Evaluation of a novel fluorescence polarization immunoassay for teicoplanin, Antimicrob. Agents Chemother. 37: 1924–1926.

    CAS  Google Scholar 

  178. Mastin, S. H., Buck, R. L., and Mueggler, P. A.,1993, Performance of a fluorescence polarization immunoassay for teicoplanin in serum, Diagn. Microbial. Infect. Dis. 16: 17–24.

    Google Scholar 

  179. Romoser, V. A., Hinkle, P. M., and Persechini, A., 1997, Detection in living cells of Cat+ dependent changes in the fluorescence emission of an indicator composed of two green fluorescent protein variants linked by a calmodulin-binding sequence, A new class of fluorescent indicators J. Biol. Chem. 272: 13270–13274.

    CAS  Google Scholar 

  180. Miyawaki, A., Llopis, J., Heim, R., McCaffery, J. M., Adams, J. A., Ikura, M., and Tsien, R. Y., 1997, Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin, Nature 388: 882–887.

    CAS  Google Scholar 

  181. Albano, C. R., Randers-Eichhorn, L., Bentley, W. E., and Rao, G., 1998, Green fluorescent protein as a real time quantitative reporter of heterogeneous protein production, Biotechnol. Prog. 14: 351–554.

    CAS  Google Scholar 

  182. Randers-Richhorn, L, Albano, C. R., Sipior, J., Bentley, W. E, and Rao, G., 1997, On-line green fluorescent protein sensor with LED excitation, Biotechnol. Bioeng. 55: 921–926.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lakowicz, J.R. (1999). Fluorescence Sensing. In: Principles of Fluorescence Spectroscopy. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3061-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3061-6_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-3063-0

  • Online ISBN: 978-1-4757-3061-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics