Skip to main content

Opposing Resistance to the Head Movement Does not Affect Space Perception During Head Rotations

  • Chapter

Abstract

The neural encoding of the visual space is still a central issue in the general field of neurophysiology and psychophysiology. Many questions tickle the curiosity of the researchers in the face of spectacular daily spatial performance. Among the current questions that authors attempt to solve is how the central nervous system (CNS) updates the egocentric position of objects from the environment during self-motion? What is the nature of the cues that individuals rely on to determine the new position of objects with respect to the body after such displacements? How is the heterogeneous sensory information centrally processed to provide an uniformed and coherent representation of the extracorporeal world?

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abrahams, VC, Richmond, FJR (1988) Specialization of sensorimotor organization in the neck muscle system. Prog Brain Res 76: 125–135

    Article  PubMed  CAS  Google Scholar 

  • Berthoz A, Israel I, Georges-Francois P, Grasso R, Tsuzuku T (1996)! Spatial memory of body linear displacement: what is being stored? Science 269: 95–98

    Article  Google Scholar 

  • Berthoz A, Israel I, Vieville T, Zee D (1987) Linear head displacement measured by the otoliths can be reproduced through the saccadic system. Neurosci Lett 82: 285–290

    Article  PubMed  CAS  Google Scholar 

  • Biguer B, Prablanc C, Jeannerod M (1984) The contribution of coordinated eye and head movements in hand ponting accuracy. Exp Brain Res 55: 462–469

    Article  PubMed  CAS  Google Scholar 

  • Bloomberg J, Melvill Jones G, Segal B (1991) Adaptive modification of vestibularly perceived rotation. Exp Brain Res 84: 47–56

    PubMed  CAS  Google Scholar 

  • Blouin J, Bard C, Teasdale N, Paillard J, Fleury M, Forget R, Lamarre Y (1993) Reference systems for coding spatial information in normal subjects and a deafferented patient. Exp Brain Res 93: 324–331

    Article  PubMed  CAS  Google Scholar 

  • Blouin J, Gauthier GM, van Donkelaar P, Vercher J-L (1995a) Encoding the position of a flashed visual target after passive body rotations. Neuroreport 6: 1165–1168

    Article  PubMed  CAS  Google Scholar 

  • Blouin J, Gauthier GM, Vercher J-L (1997) Visual object localization through vestibular and neck inputs. 2: Updating off-mid-sagital-plane target positions. J Vest Res 7: 137–143

    Article  CAS  Google Scholar 

  • Blouin J, Labrousse L, Simoneau M, Vercher J-L, Gauthier GM (in press b) Updating visual space during passive and voluntary head-in-space movements. Exp Brain Res

    Google Scholar 

  • Blouin J, Okada T, Wolsley C, Bronstein A (in press a) Encoding target-trunk relative position: cervical vs. vestibular contribution. Exp Brain Res

    Google Scholar 

  • Blouin J, Vercher J-L, Gauthier GM, Paillard J, Bard C, Lamarre Y (1995b) Perception of passive whole-body rotation in the absence of neck and body proprioception. J Neurophysiol 74: 2216–2219

    PubMed  CAS  Google Scholar 

  • Cohen LA (1960) Role of eye and neck proprioceptive mechanisms in body orientation and motor coordination. J Neurophysiol 24: 1–11

    Google Scholar 

  • Deecke L, Schwartz DWF, Fredrickson JM (1977) Vestibular responses in the rhesus monkey ventroposterior thalamus. II. Vestibulo-proprioceptive convergence at thalamic neurons. Exp Brain Res 30: 219–232

    PubMed  CAS  Google Scholar 

  • Gandevia SC, McCloskey DI, Burke D (1992) Kinaesthetic signals and muscle contraction. Trends Neurosci 15: 62–65

    Article  PubMed  CAS  Google Scholar 

  • Grigg P, Greenspan BJ (1977) Response of primate joint afferent neurons to mechanical stimulation of kee joint. J Neurophysiol 40: 1–8

    PubMed  CAS  Google Scholar 

  • Israel I, Bronstein AM, Kanayama R, Faldon M, Gresty M (1996) Exp Brain Res 112: 411–119

    Article  PubMed  CAS  Google Scholar 

  • Israel I, Sievering D, Koenig E (1995) Self-rotation estimate about the vertical axis. Acta Oto-laryngol 115: 3–8

    Article  CAS  Google Scholar 

  • Jeannerod M (1991) The interaction of visual and proprioceptive cues in controlling reaching movements. In: Humphrey DR, Freund H J (eds) Motor control: concepts and issues. John Wiley & Sons, New York, pp 277–291

    Google Scholar 

  • Maurer C, Kimmig H, Trefzer A, Mergner T (1997) Visual object localization through vestibular and neck inputs. 1 : Localization in space and relative to the head and trunk mid-sagittal planes. J Vestib Res 7: 119–135

    Article  PubMed  CAS  Google Scholar 

  • Mergner T, Rottler G, Kimmig H, Becker W (1992) Role of vestibular and neck inputs for the perception of object motion in space. Exp Brain Res 89: 655–668

    Article  PubMed  CAS  Google Scholar 

  • Mergner T, Siebold C, Schweigart G, Becker W (1991) Human perception of horizontal and head rotation in space. Exp Brain Res 85: 389–404

    Article  PubMed  CAS  Google Scholar 

  • Nakamura T, Bronstein AM (1995) The perception of head and neck angular displacement in normal and labyrinthine-defective subjects. A quantitative study using a ‘remembered saccade’ technique. Brain 118: 1157–1168

    Article  PubMed  Google Scholar 

  • Paillard J (1987) Cognitive versus sensorimotor encoding of spatial information. In: Ellen P, Thinus-Blanc C (eds) Cognitive processes and spatial orientation in animal and man. Martinus Nijhoff, Dordrecht, pp 1–34

    Google Scholar 

  • Roll R, Bard C, Paillard J (1986) Head orienting contributes to the directional accuracy of aiming at distant targets. Hum Movement Sei 5: 359–371

    Article  Google Scholar 

  • Taylor JL, McCloskey DI (1988) Proprioception in the neck. Exp Brain Res 70: 351–360

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Blouin, J., Amade, N., Vercher, JL., Gauthier, G. (1999). Opposing Resistance to the Head Movement Does not Affect Space Perception During Head Rotations. In: Becker, W., Deubel, H., Mergner, T. (eds) Current Oculomotor Research. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3054-8_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3054-8_29

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3308-9

  • Online ISBN: 978-1-4757-3054-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics