Skip to main content

Part of the book series: Graduate Texts in Mathematics ((GTM,volume 172))

  • 3390 Accesses

Abstract

The problem of extending the function n! to real arguments and finding the simplest possible “factorial function” with value n! at n ∈ ℕ led Euler in 1729 to the Г-function. He gave the infinite product

$$\Gamma \left( {z + 1} \right): = \frac{{1 \cdot {2^z}}}{{1 + z}} \cdot \frac{{{2^{1 - z}}{3^z}}}{{2 + z}} \cdot \frac{{{3^{1 - z}}{4^z}}}{{3 + z}} \cdot\ldots= \prod\limits_{\nu= 1}^\infty{{{\left( {1 + \frac{1}{\nu }} \right)}^z}{{\left( {1 + \frac{z}{\nu }} \right)}^{ - 1}}} $$

as a solution.l Euler considered only real arguments; Gauss, in 1811, admitted complex numbers as well. On 21 November 1811, he wrote to Bessel (1784–1846), who was also concerned with the problem of general factorials, “Will man sich aber nicht... zahllosen Paralogismen und Paradoxen und Widersprüchen blossstellen, so muss 1∙2∙3.... x nicht als Definition von Пx gebraucht werden, da eine solche nur, wenn x eine ganze Zahl ist, einen bestimmten Sinn hat, sondern man muss von einer höheren allgemein, selbst auf imaginäre Werthe von x anwendbaren, Definition ausgehen, wovon... jene als specieller Fall erscheint. Ich habe folgenden gewählt

$$\prod x = \frac{{1.2.3 \ldots k.k^x }} {{x + 1.x + 2.x + 3 \ldots x + k'}}$$

wenn k unendlich wird.” (But if one doesn’t want... countless fallacies and paradoxes and contradictions to be exposed, 1∙2∙3... x must not be used as the definition of Пx, since such a definition has a precise meaning only when x is an integer; rather, one must start with a definition of greater generality, applicable even to imaginary values of x, of which that one occurs as a special case. I have chosen the following... when k becomes infinite.) (Cf. [G1], pp. 362–363.) We will understand in §2.1 why, in fact, Gauss had no other choice.

Also das Product 1∙2∙3... x ist die Function, die meiner Meinung nach in der Analyse eingeführt werden muss. (Thus the product 1∙2∙3... x is the function that, in my opinion, must be introduced into analysis.)

— C. F. Gauss to F. W. Bessel, 21 November 1811

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Artin, E.: The Gamma Function, trans. M. Butler, Holt, Rinehart and Winston, New York, 1964.

    MATH  Google Scholar 

  2. Bieberbach, L.: Theorie der gewöhnlichen Differentialgleichungen, Grdl. Math. Wiss. 66, 2nd ed., Springer, 1965.

    Google Scholar 

  3. Binet, M. J.: Mémoire sur les intégrales définies Eulériennes, Journ. de l’École Roy. Polyt 16, 123–343 (1839).

    Google Scholar 

  4. Bohr, H. and J. Mollerup: Laerebog i matematisk Analyse, vol. 3, Copen-hagen, 1922.

    Google Scholar 

  5. Dirichlet, P. G.: Über eine neue Methode zur Bestimmung vielfacher Integrale, Abh. Königl. Preuss. Akad. Wiss 1839, 61–79; Werke 1, 393410.

    Google Scholar 

  6. Leonhardi Euleri Opera omnia, sub auspiciis societatis scientarium natu-ralium Helveticae, Series I-IV A, 1911-.

    Google Scholar 

  7. Gauss, C. F.: Letter to Bessel, Werke 10, Part 1, 362–365.

    Google Scholar 

  8. Gauss, C. F.: Disquisitiones generales circa seriam infinitam Werke 3, 123–162.

    Google Scholar 

  9. Gudermann, C.: Additamentum ad functionis r(a) = fô e-x • xa-lax theoriam, Journ. reine angew. Math 29, 209–212 (1845).

    Article  Google Scholar 

  10. Hankel, H.: Die Eulerschen Integrale bei unbeschränkter Variabilität des Argumentes, Zeitschr. Math. Phys 9, 1–21 (1864).

    Google Scholar 

  11. Hausdorff, F.: Zum Hölderschen Satz über r(x), Math. Ann 94, 244–247 (1925).

    Article  MathSciNet  Google Scholar 

  12. Holder, O.: Ueber die Eigenschaft der Gammafunktion keiner algebrais-chen Differentialgleichungen zu genügen, Math. Ann 28, 1–13 (1887).

    Article  Google Scholar 

  13. Jacobi, C. G. J.: Demonstratio formulae fô wa-1(1–w)b-1dw =…, Journ. reine angew. Math. 11, p. 307 (1833); Ges. Werke 6, 62–63.

    Article  MathSciNet  Google Scholar 

  14. Jensen: An elementary exposition of the theory of the gamma function, Ann. Math 17 (2nd ser.), 1915–16, 124–166.

    Article  MathSciNet  Google Scholar 

  15. Kneser, H.: Funktionentheorie, Vandenhoeck and Ruprecht 1958.

    Google Scholar 

  16. Kummer, E. E.: Beitrag zur Theorie der Function r(x) = Journ. reine angew. Math 35, 1–4 (1847): Coll. Papers II, 325–328.

    Google Scholar 

  17. Legendre, A. M.: Exercices de calcul intégral, 3 vols., Paris 1811, 1816, and 1817.

    MATH  Google Scholar 

  18. Legendre, A. M.: Traité des fonctions elliptiques et des intégrales Eulériennes, 3 vols., Paris 1825, 1826, and 1828.

    MATH  Google Scholar 

  19. Lindelöf, E.: Le calcul des résidus, Paris 1905; reprinted 1947 by Chelsea Publ. Co., New York; Chap. I V in particular.

    Google Scholar 

  20. Moore, E. H.: Concerning transcendentally transcendental functions, Math. Ann. 48, 49–74 (1897).

    MATH  Google Scholar 

  21. Newman, F. W.: On F(a) especially when a is negative, Cambridge and Dublin Math. Journ 3, 57–60 (1848).

    Google Scholar 

  22. Nielsen, N.: Handbuch der Theorie der Gammafunktion,first printing Leipzig 1906, reprinted 1965 by Chelsea Publ. Co., New York.

    Google Scholar 

  23. Ostrowski, A.: Zum Hölderschen Satz über r(x), Math. Ann. 94, 248–251 (1925); Coll. Math. Pap 4, 29–32.

    Google Scholar 

  24. Pincherle, S.: Sulla funzioni ipergeometriche generalizzate, II, Atti. Rend. Reale Accad. Lincei (4), 792–799 (1889), Opere scelte I, 231–238.

    Google Scholar 

  25. Plana, J.: Note sur une nouvelle expression analytique des nombres Bernoul-liens, propre à exprimer en termes finis la formule générale pour la sommation des suites, Mem. Reale Accad. Sci. Torino 25, 403–418 (1820).

    Google Scholar 

  26. Prym, F. E.: Zur Theorie der Gammafunction, Journ. reine angew. Math 82, 165–172 (1876).

    MathSciNet  MATH  Google Scholar 

  27. Remmert, R.: Wielandt’s theorem about the F-function, Amer. Math. Monthly 103, 214–220 (1996).

    MathSciNet  MATH  Google Scholar 

  28. Remmert, R.: Wielandt’s characterization of the P-function, in Math. Works of Helmut Wielandt, vol. 2, 265–268 (1996).

    Google Scholar 

  29. Scharlau, W. (ed.): Rudolph Lipschitz, Briefwechsel mit Cantor, Dedekind, Helmholtz, Kronecker, Weierstrass und anderen, Dok. Gesch. Math. 2, DMV, Vieweg u. Sohn, 1986.

    Google Scholar 

  30. Schäfke, F. W. and A. Finsterer: On Lindelöf’s error bound for Stirling’s series, Journ. reine angew. Math 404, 135–139 (1990).

    MATH  Google Scholar 

  31. Schäfke, F. W. and A. Sattler: Restgliedabschätzungen für die Stirlingsche Reihe, Note. Mat. X, Suppl. no. 2, 453–470 (1990).

    MATH  Google Scholar 

  32. Schlomilch, O.: Einiges über die Eulerischen Integrale der zweiten Art, Arch. Math. Phys 4, 167–174 (1843).

    Google Scholar 

  33. Sansone, G. and J. Gerretsen: Lectures on the Theory of Functions of a Complex Variable, vol. I, P. Noordhoff-Groningen, 1960.

    MATH  Google Scholar 

  34. Stieltjes, T.-J.: Sur le développement de log F(a), Journ. Math. Pur. Appl. (4)5, 425–444 (1889); Œuvres 2, Noordhoff, 1918, 211–230; 2nd ed., Springer, 1993, 215–234.

    Google Scholar 

  35. Titchmarsh, E. C.: The Theory of the Riemann Zeta-Function, Oxford University Press, 1951.

    Google Scholar 

  36. Walter, W.: Analysis I, Grundwissen 3, Springer, 1985, 2nd ed. 1990.

    Google Scholar 

  37. Weierstrass, K.: Über die Theorie der analytischen Facultäten, Journ. reine angew. Math. 51, 1–60 (1856), Math. Werke 1, 153–221.

    Article  MathSciNet  Google Scholar 

  38. Weierstrass, K.: Zur Theorie der eindeutigen analytischen Functionen, Math. Werke 2, 77–124.

    Google Scholar 

  39. Whittaker, E. T. and G. N. Watson: A Course of Modern Analysis, 4th ed., Cambridge Univ. Press, 1927, Chap. X II in particular.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Remmert, R. (1998). The Gamma Function. In: Classical Topics in Complex Function Theory. Graduate Texts in Mathematics, vol 172. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-2956-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2956-6_2

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-98221-2

  • Online ISBN: 978-1-4757-2956-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics