Skip to main content

Pharmacology of Cocaine

  • Chapter

Abstract

Cocaine is a naturally occurring alkaloid extracted from the leaves of the South American shrub Erythroxylon coca. Early European explorers reported the habit of chewing of coca leaves by native populations, and systematic investigations of the effects of cocaine were conducted in the late nineteenth century by Sigmund Freud and others. For a review of the older literature on cocaine, the reader is referred to VanDyke and Byck (1974). Cocaine possesses short-acting local anesthetic and vasoconstrictor properties, which make it clinically useful for topical application. Its actions as a local anesthetic are due to inhibition of neuronal sodium channels which results in blockage of the initiation and conduction of nerve impulses. This area is not discussed in detail in this chapter. Cocaine is a Schedule II drug in the United States. Its abuse is associated with enormous costs to both addicted individuals and to society as a whole. Valuable perspectives on the abuse of cocaine and other stimulants were provided by Gawin and Ellinwood (1988).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ackerman, J. M., & White, F. J. (1990). A10 somatodendritic dopamine autoreceptor sensitivity following withdrawal from repeated cocaine treatment. Neuroscience Letters, 117, 181–187.

    Article  PubMed  CAS  Google Scholar 

  • Akimoto, K., Hamamura, T., & Otsuki, S. (1989). Sub-chronic cocaine treatment enhances cocaine induced dopamine efflux, studied by in vivo intracerebral dialysis. Brain Research, 490, 339–344.

    Article  PubMed  CAS  Google Scholar 

  • Ambre, J. (1985). The urinary excretion of cocaine and metabolites in humans: A kinetic analysis of published data. Journal ofAnalytic Toxicology. 9, 241–245.

    CAS  Google Scholar 

  • Balster, R. L., & Schuster, C. R. (1973). Fixed-interval schedule of cocaine reinforcement: Effect of dose and infusion duration. Journal of Experimental and Analytic Behavior, 20, 119–129.

    Article  CAS  Google Scholar 

  • Barnet, G., Hawks, R., & Resnick, R. (1981). Cocaine pharmacokinetics in humans. Journal of Ethnopharmacology, 3, 353–366.

    Article  Google Scholar 

  • Berger, S. P., Hall, S., Mickalian, J. D., Reid, M. S., Crawford, C. A., Delucchi, K., Carr, K., & Hall, S. (1996). Haloperidol antagonism of cue-elicited cocaine craving. Lancet, 347, 504–508.

    Article  PubMed  CAS  Google Scholar 

  • Biegon, A., Dillon, K., Volkow, N. D., Hitzemann, R. J., Fowler, J. S., Wolf, A. P. (1992). Quantitative autoradiography of cocaine binding sites in human brain postmortem. Synapse, 10, 126–130.

    Article  PubMed  CAS  Google Scholar 

  • Boja, J. W, Carroll, F. I., Rahman, M. A., Philip, A., Lewin, A. H., & Kuhar, M. J. (1990). New, potent cocaine analogs: Ligand binding and transport studies in rat striatum. European Journal of Pharmacology, 184, 329–332.

    Article  PubMed  CAS  Google Scholar 

  • Boja, J. W, Patel, A., Carroll, F. I., Rahman, M. A., Philip, A., Lewin, A., Kopajtic, T. A., & Kuhar, M. J. (1991). [’251]RTI-55: A potent ligand for dopamine transporters. European Journal of Pharmacology, 194, 133–134.

    Google Scholar 

  • Boja, J. W, Markham, L., Patel, A., Uhl, G., Kuhar, M. J. (1992). Expression of a single dopamine transporter cDNA can confer two cocaine binding sites. Neuroreport, 3, 247–248.

    Article  PubMed  CAS  Google Scholar 

  • Braestrup, C. (1977). Biochemical differentiation of amphetamine vs methylphenidate and nomifensine in rats. Journal of Pharmacy and Pharmacology, 26, 463–470.

    Article  Google Scholar 

  • Brzezinski, M. R., Abraham, T. R., Stone, C. L., Dean, R. A., & Bosron, W F. (1994). Purification and characterization of a human liver cocaine carboxylesterase that catalyzes the production of benzoylecgonine and the formation of cocaethylene from alcohol and cocaine. Biochemical Pharmacology, 48, 1747–1755.

    Article  PubMed  CAS  Google Scholar 

  • Butcher, S., Liptrot, J., & Aburthnot, G. (1991). Characterization of methylphenidate and nomifensine induced dopamine release in rat striatum using in vivo brain microdialysis. Neuroscience Letters, 122, 245–248.

    Article  PubMed  CAS  Google Scholar 

  • Calligaro, D. O., & Eldefrawi, M. E. (1988). High affinity stereospecific binding of [3H]cocaine in striatum and its relationship to the dopamine transporter. Membrane Biochemistry, 7, 87–106.

    Article  CAS  Google Scholar 

  • Carelli, R. M., King, V C., Hampson, R. E., & Deadwyler, S. A. (1993). Firing patterns of nucleus accumbens neurons during cocaine self-administration in rats. Brain Research, 626, 14–22.

    Article  PubMed  CAS  Google Scholar 

  • Carlezon, W. A., Devine, D. P., & Wise, R. A. (1995). Habit-forming actions of nomifensine in nucleus accumbens. Psychopharmacologv. 122, 194–197.

    Article  CAS  Google Scholar 

  • Carroll, F. 1., Lewin, A. H., Boja, J. W., & Kuhar, M. J. (1992). Cocaine receptor: Biochemical characterization and structure-activity relationships of cocaine analogues at the dopamine transporter. Journal of Medicinal Chemistry, 35, 969–981.

    Article  PubMed  CAS  Google Scholar 

  • Carroll, E I., Kotian, P., Dehghani, A., Gray, J. L., Kuzemko, M. A., Parham, K. A., Abraham, P., Lewin, A. H., Boja, J. W., & Kuhar, M. J. (1995). Cocaine and 3b-(4’-substituted phenyl)tropane-2b-carboxylic acid ester and amide analogues: New high-affinity and selective compounds for the dopamine transporter. Journal of Medicinal Chemistry, 38, 379–388.

    Article  PubMed  CAS  Google Scholar 

  • Cass, W. A., & Zahniser, N. R. (1993). Cocaine levels in striatum and nucleus accumbens: Augmentation following challenge injection in rats withdrawn from repeated cocaine administration. Neuroscience Letters, 152, 177–180.

    Article  PubMed  CAS  Google Scholar 

  • Chait, L. D., Uhlenhuth, E. H., & Johanson, C. E. (1987). Reinforcing and subjective effects of several anorectics in normal human volunteers. Journal of Pharmacology and Experimental Therapeutics, 242, 777–783.

    PubMed  CAS  Google Scholar 

  • Chiueh, C. C., & Kopin, I. J. (1978). Endogenous epinephrine and norepinephrine from the synpathoadrenal medullary system of unanesthetized rats. Journal of Pharmacology and Experimental Therapeutics, 205, 14–154.

    Google Scholar 

  • Chow, M. J., Ambre, J. J., Ruo, T. 1., Atkinson, A. J., Bowsher, D. J., & Fischman, M. W. (1985). Kinetics of cocaine distribution, elimination and chronotropic effects. Clinical Pharmacology Therapy, 38, 318–324.

    CAS  Google Scholar 

  • Clarke, R. L., Daum, S. J., Gambino, A. J., Aceto, M. D., Pearl, J., Levitt, M., Cumisky, W. R., & Bogado, E. E. (1973). Compounds affecting the central nervous system 4 3-b-phenyltropane-2-carboxylic esters and analogs. Journal of Medicinal Chemistry, 16, 1260–1267.

    Article  PubMed  CAS  Google Scholar 

  • Cone, E. J. (1995). Pharmacokinetics and pharmacodynamics of cocaine. Journal of Analytic Toxicology, 19, 459–478.

    CAS  Google Scholar 

  • Cone, E. J., Kumor, K., Thompson, L. K., & Sherer, M. (1988). Correlation of saliva cocaine levels with plasma levels and with pharmacological effects after intravenous cocaine administration in human subjects. Journal of Analytic Toxicology, 12, 200–206.

    CAS  Google Scholar 

  • Connell, P. H. (1958) Amphetamine psychosis. London: Chapman and Hill.

    Google Scholar 

  • Cook, C. E., Jeffcoat, A. R., & Perez-Reyes, M. (1985) Pharmacokinetic studies of cocaine and phencyclidine in man. In G. Barnett & N. C. Chang (Eds.), Pharmacokinetics and pharmacodynamies of psychoactive drugs (pp. 48–74 ). Foster City, CA: Biomedical Publications.

    Google Scholar 

  • Dackis, C. A., & Gold, M. S. (1985). New concepts in cocaine addiction: The dopamine depletion hypothesis. Neuroscience and Behavior Review, 9, 469–477.

    Article  CAS  Google Scholar 

  • Davies, H. M. L., Saikali, E., Sexton, T., & Childers, S. R. (1993). Novel 2-substituted cocaine analogs-bindingproperties at dopamine transport sites in rat striatum. European Journal of Pharmacology, 244, 93–97.

    Article  PubMed  CAS  Google Scholar 

  • Dean, R. A., Christian, C. D., Sample, R. H. B., & Bosron, W. F. (1991). Human liver cocaine esterases: Ethanol mediated formation of ethylcocaine. Federation of the American Societies for Experimental Biology Journal, 5, 2735–2739.

    CAS  Google Scholar 

  • Dean, R. A., Bosron, W. F., Zachman, F. M., Zhang, J., & Brzezinski, M. R. (1997). Effects of ethanol on cocaine metabolism and disposition in the rat. NIDA Research Monograph No. 173, pp. 35–47 ). Washington, DC: U.S. Government Printing Office.

    Google Scholar 

  • Deutsch, H. M., & Schweri, M. M. (1994). Can stimulant binding and dopamine transport be differentiated-studies with GBR-12783 derivatives. Life Science, 55, 1115–1120.

    Article  Google Scholar 

  • Deutsch, H. M., Shi, Q., Gruszecka-Kowalik, E., & Schweri, M. M. (1996). Synthesis and pharmacology of potential cocaine antagonists: 2. Structure-activity relationship studies of aromatic ring substituted methylphenidate analogs. Journal of Medicinal Chemistry, 39, 1201–1209.

    Article  PubMed  CAS  Google Scholar 

  • deWit, H., Metz, J. T., Wagner, N., & Cooper, M. D. (1990). Behavioral and subjective effects of alcohol: Relationship to cerebral metabolism using PET. Alcoholism: Clinical and Experimental Research, 14, 482–489.

    Article  CAS  Google Scholar 

  • deWit, H., Metz, J. T., & Cooper, M. D. (1994) The effects of drugs of abuse on regional cerebral metabolism and mood. In B. N. Dhawan, R. C. Srimal, R. Raghubir, & R. S. Rapaka (Eds.), Recent advances in the study of neurotransmitter receptors (pp. 482–489 ). Lucknow, India: Central Drug Research Institute.

    Google Scholar 

  • Di Chiara, G., & Imperato, A. (1988). Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proceedings of the National Academy of Science, 85, 5274–5278.

    Article  Google Scholar 

  • Einhorn, L. C., Johansen, P. A., & White, F. J. (1988). Electrophysiological effects of cocaine in the mesoaccumbens dopamine system: Studies in the ventral tegmental area. Journal of Neuroscience, 8, 100–112.

    PubMed  CAS  Google Scholar 

  • El-Fawal, H. A. N., & Wood, R. W. (1995). airway smooth muscle relaxant effects of the cocaine pyrolysis product, methylecgonidine. Journal of Pharmacology and Experimental Therapeutics, 272, 991–996.

    Google Scholar 

  • Erzouki, H. K., Allen, A. C., Newman, A. H., Goldberg, S. R., & Schindler, C. W. (1995). Effects of cocaine, cocaine metabolites and cocaine pyrolysis products on the hindbrain cardiorespiratory centers of the rabbit. Life Science, 57, 1861–1868.

    Article  CAS  Google Scholar 

  • Eshleman, E. J., Henningsen, R. A., Neve, K. A., & Janowsky, A. (1994). Release of dopamine via the human transporter. Molecular Pharmacology, 45, 312–316.

    PubMed  CAS  Google Scholar 

  • Evans, S. M., Cone, E. J., Marco, A. P., & Henningfield, J. E. (1992) A comparison of the kinetics of smoked and intravenous cocaine. In L. Harris (Ed.), Problems of drug dependence (p. 343 ). Rockville, MD: U.S. Department of Health and Human Services.

    Google Scholar 

  • Farre, M., Torre, R. D. L., Llorente, M., Lamas, X., Ugena, B., Segura, J., & Cami, J. (1993). Alcohol and cocaine interactions in humans. Journal of Pharmacology and Experimental Therapeutics, 266, 1364–1373.

    PubMed  CAS  Google Scholar 

  • Fitzgerald, J. L., & Reid, J. J. (1991). Chronic cocaine treatment does not alter rat striatal D2 autoreceptor sensitivity to pergolide. Brain Research, 541, 327–333.

    Article  PubMed  CAS  Google Scholar 

  • Foltin, R. W, & Fischman, M. W. (1992). Self-administration of cocaine by humans: Choice between smoked and intravenous cocaine,. Journal of Pharmacology and Experimental Therapeutics. 261, 841–849.

    PubMed  CAS  Google Scholar 

  • Fowler, J. S., Volkow, N. D., Wolf, A. P., Dewey, S. L., Schlyer, D. J., & MacGregor, R. R. (1989). Mapping cocaine binding sites in human and baboon brain in vivo. Synapse, 4, 371–377.

    Article  PubMed  CAS  Google Scholar 

  • Fowler, J. S., Volkow, N. D., Logan, J., MacGregor, R. R., Wang, G. J., & Wolf, A. P. (1992). Alcohol intoxication does not change [I IC] cocaine pharmacokinetics in human brain and heart. Synapse, 12, 228–135.

    Article  PubMed  CAS  Google Scholar 

  • Fowler, J. S., Volkow, N. D., MacGregor, R. R., Logan, J., Dewey, S. L., Gatley, S. J., & Wolf, A. P. (1992). Comparative PET studies of the kinetics and distribution of cocaine and cocaethylene baboon brain. Synapse, 12, 220–227.

    Article  PubMed  CAS  Google Scholar 

  • Fowler, J. S., Ding, Y.-S., Volkow, N. D., Martin, T., MacGregor, R. R., Dewey, S., King, P., Pappas, N., Alexoff, D., Shea, C., Gatley, S. J., Schlyer, D. J., & Wolf, A. P. (1994). PET studies of cocaine inhibition of the my- ocardial norepinephrine uptake. Synapse, 16, 312–317.

    Article  PubMed  CAS  Google Scholar 

  • Frost, J. J., Rosier, A. J., Reich, S. G., Smith, J. S., Ehlers, M. D., Snyder, S. H., Ravert, H. T., & Dannals, R. F. (1993). Positron emission tomographic imaging of the dopamine transporter with “C-WIN 35,428 reveals marked declines in mild Parkinson’s disease. Annals of Neurology, 34, 423–431.

    Article  PubMed  CAS  Google Scholar 

  • Galloway, M. P. (1988). Neurochemical interactions of cocaine with the dopaminergic system. Trends in Pharmacological Science, 9, 451–454.

    Article  CAS  Google Scholar 

  • Gardner, E. L. (1992). Brain reward mechanisms. In J. H. Lowinson, P. Ruiz, J. G. Millman, & J. G. Langrod (Eds.), Substance abuse: A comprehensive textbook (pp. 70–99 ). Baltimore, MD: Williams and Wilkins.

    Google Scholar 

  • Garrett, E. R., & Seyda, K. (1983). Prediction of stability in pharmaceutical preparations XX: Stability, evaluation and bioanalysis of cocaine and benzoylecgonine by high performance liquid chromatography. Journal of Pharmacy and Science, 72, 258–271.

    Article  CAS  Google Scholar 

  • Gatley, S. J. (1991). The activities of the enantiomers of cocaine, and some related compounds as substrates and inhibitors of plasma butyrylcholinesterase. Biochemical Pharmacology, 41, 1249–1254.

    Article  PubMed  CAS  Google Scholar 

  • Gatley, S. J., MacGregor, R. R., Fowler, J. S., Wolf, A. P., Dewey, S. L., & Schlyer, D. J. (1990). Rapid stereos-elective hydrolysis of (+) cocaine in baboon plasma prevents its uptake in the brain: Implications for behavioral studies. Journal of Neurochemistry, 54, 720–723.

    Article  PubMed  CAS  Google Scholar 

  • Gatley, S. J., Yu, D.-W., Fowler, J. S., MacGregor, R. R., Schlyer, D. J., Dewey, S. L., Wolf, A. P., Shea, C. E., Martin, T. E, & Volkow, N. D. (1994). Studies with differentially labeled C-11 cocaine, C-1 I nor-cocaine, C-11 benzoylecgonine, and C-11 and F-18 4’-fluorococaine, to probe the extent to which C-Il cocaine metabolites contribute to PET images of the baboon brain. Journal of Neurochemistry, 62, 1154–1162.

    Article  PubMed  CAS  Google Scholar 

  • Gatley, S. J., Pan, D., Chen, R., Chatrurvedi, G., & Ding, Y.-S. (1996). Affinities of methylphenidate derivatives for dopamine, norepinephrine and serotonin transporters. Life Science, 58, PL231–PL239.

    Google Scholar 

  • Gatley, S. J., Volkow, N. D., Chen, R., Fowler, J. S., Carroll, F. I., & Kuhar, M. J. (1996). Displacement of rti55 from the dopamine transporter by cocaine: implications for pharmacotherapy of stimulant abuse and in vivo imaging studies. European Journal of Pharmacology, 296, 145–151.

    Article  PubMed  CAS  Google Scholar 

  • Gawin, F. H., & Ellinwood, E. H. (1988). Cocaine and other stimulants. New England Journal of Medicine, 318, 1173–1182.

    Article  PubMed  CAS  Google Scholar 

  • Gawin, F. H., Riordan, C., & Kleber, H. D. (1985). Methylphenidate use in non-ADD cocaine abusers: A negative study. American Journal of Drug and Alcohol Abuse, 11, 193–197.

    Article  PubMed  CAS  Google Scholar 

  • Gifford, A. N., & Johnson, K. M. (1992). Comparison of the role of local anaesthetic properties with dopamine uptake blockade in the inhibition of striatal and nucleus accumbens [3H]acetylcholine release by cocaine. Journal of Pharmacology and Experimental Therapeutics, 263, 757–761.

    PubMed  CAS  Google Scholar 

  • Gifford, A. N., Bergmann, J. S., & Johnson, K. M. (1993). GBR 12909 fails to antagonize cocaine induced elevation of dopamine in striatal slices. Drug and Alcohol Dependence, 93, 65–71.

    Article  Google Scholar 

  • Giros, B., Jaber, M., Jones, S. R., Wightman, R. M., & Caron, M. G. (1996). Hyperlocomotion and indifference to cocaine and amphetamine in mice lacking the dopamine transporter. Nature, 379, 606–612.

    Article  PubMed  CAS  Google Scholar 

  • Gradman, A. H. (1988). Cardiac effects of cocaine: A review. Yale Journal of Biological Medicine, 61, 137–141.

    CAS  Google Scholar 

  • Guerin, G. F., Goeders, N. E., Dworkin, S. I., & Smith, J. E. (1984). Intracranial self-administration of dopamine into the nucleus accumbens. Society of Neuroscience Abstracts, 10, 1072.

    Google Scholar 

  • Hawks, R. L., Kopin, I. J., Colburn, R. W., & Thoa, N. B. (1975). Norcocaine: A pharmacologically active metabolite of cocaine found in brain. Life Science, 15, 2189–2195.

    Article  Google Scholar 

  • He, X. S., Raymon, L. P., Mattson, M. V, Eldefrawi, M. E., & DeCosta, B. R. (1993). Further studies of the structure-activity relationships of I-[I-(2benzo[b]thienyl)cyclohexyl]piperidine. synthesis and evaluation of I-(2-benzo[b]thienyl)-N,N-dialkylcyclohexylamines at dopamine uptake and phencyclidine binding sites. Journal of Medicinal Chemistry, 36, 4075–4081.

    Article  PubMed  CAS  Google Scholar 

  • Hearn, W. L., Flynn, D. D., Hime, G. W., Rose, S., Confino, J. C., ManteroAtienza, E., Wetli, C. W, & Mash, D. C. (1991). Cocaethylene: A unique cocaine metabolite displays high-affinity for the dopamine. transporter. Journal of Neurochemistry, 56, 698–701.

    Article  PubMed  CAS  Google Scholar 

  • Henningfield, J. E., & Keenan, R. M. (1993). Nicotine delivery kinetics and abuse liability. Journal of Consulting and Clinical Psychiatry, 61, 743–750.

    Article  CAS  Google Scholar 

  • Henry, D. J., & White, F. J. (1991). Repeated cocaine administration caused persistent enhancement of DI dopamine receptor sensitivity within the rat nucleus accumbens. Journal of Pharmacology and Experimental Therapeutics, 258, 882–890.

    PubMed  CAS  Google Scholar 

  • Henry, D. J., Greene, M. A., & White, E J. (1989). Electrophysiological effects of cocaine in the mesoaccumbens dopamine system: Repeated administration. Journal of Experimental Therapeutics, 251, 833–839.

    CAS  Google Scholar 

  • Hoffman, D. C., & Wise, R. A. (1993). Lack of cross-sensitization between the locomotor-activating effects of bromocriptine and those of cocaine or heroin. Psychopharmacology, 110, 402–408.

    Article  PubMed  CAS  Google Scholar 

  • Huester, D. C. (1987). Cardiovascular effects of cocaine. Journal of the American Medical Association, 257, 979–980.

    Article  Google Scholar 

  • Hurd, Y. L., & Herkenham, M. (1993). Molecular alterations in the neostriatum of human cocaine addicts. Synapse, 13, 357–369.

    Article  PubMed  CAS  Google Scholar 

  • Hurd, Y. L., & Ungerstedt, U. (1989). Cocaine: An in vivo microdialysis evaluation of its acute action on dopamine transmission in rat striatum. Synapse, 3, 48–54.

    Article  PubMed  CAS  Google Scholar 

  • Inaba, T. (1989). Cocaine: Pharmacokinetics and biotransformation in man. Canadian Journal of Physiology and Pharmacology, 67, 1154–1157.

    Article  PubMed  CAS  Google Scholar 

  • Isner, J., Estes, M., & Thompson, P. D. (1986). Acute cardiac events temporally related to cocaine abuse. New England Journal of Medicine, 15, 1438–1443.

    Article  Google Scholar 

  • lyer, R. N., Nobiletti, J. B., Jatlow, P. I., & Bradberry, C. W. (1995). cocaine and cocaethylene: Effects on extracellular dopamine in the primate. Psychopharmacology, 120, 150–155.

    Google Scholar 

  • Izenwasser, S., & Cox, B. M. (1990). Daily cocaine treatment produces a persistent reduction in [3H]dopamine uptake in vitro in rat nucleus accumbens but not in striatum. Brain Research, 531, 338–341.

    Article  PubMed  CAS  Google Scholar 

  • Jaffe, J. H. (1990). Trivializing dependence. British Journal of Addiction, 85, 1425–1427.

    Article  PubMed  CAS  Google Scholar 

  • Javaid, J. I., Musa, M. N., Fischman, M., Schuster, C. R., & Davis, J. M. (1983). Kinetics of cocaine in humans after intravenous and intranasal administration. Biopharmacology of Drug Disposition, 4, 9–18.

    Article  CAS  Google Scholar 

  • Jeffcoat, A. R., Perez-Reyes, M., Hill, J. M., Sadler, B. M., & Cook, C. E. (1989). Cocaine disposition in humans after intravenous injection, nasal insufflation (snorting), or smoking. Drug Metabolism and Disposition, 17, 153–159.

    PubMed  CAS  Google Scholar 

  • Johanson, C.-E., & Fischman, M. W. (1989). The pharmacology of cocaine related to its abuse. Pharmacological Review 41, 3–52.

    CAS  Google Scholar 

  • Johanson, C.-E., & Schuster, C. R. (1995) Cocaine. In F. E. Bloom & D. J. Kupfer (Eds.), Psychopharmacology: The fourth generation of progress (pp. 1685–1697 ). New York: Raven.

    Google Scholar 

  • Johnson, K. M., Bergmann, J. S., & Kozikowski, A. P. (1992). Cocaine and dopamine differentially protect [3H]mazindol binding sites from alkylation by N-ethylmaleimide. European Journal of Pharmacology, 227, 411–427.

    Article  PubMed  CAS  Google Scholar 

  • Kalivas, P. W., & Alesdatter, J. E. (1993). Involvement of NMDA receptor stimulation in the VTA and amygdala in behavioral sensitization to cocaine. Journal of Pharmacology and Experimental Therapeutics, 267, 486–495.

    PubMed  CAS  Google Scholar 

  • Kalivas, P. W., & Weber, B. (1988). Amphetamine injection into the ventral mesencephalon sensitizes rats to peripheral amphetamine and cocaine. Journal of Pharmacology and Experimental Therapeutics, 245, 1095–1101.

    PubMed  CAS  Google Scholar 

  • Karler, R., Calder, L. D., Chaudhry, I. A., & Turkanis, S. A. (1989). Blockade of “reverse tolerance” to cocaine and amphetamine by MK-801. Life Science, 45, 599–606.

    Article  CAS  Google Scholar 

  • Karler, R., Calder, L. D., & Bedingfield, J. B. (1994). Cocaine behavioral sensitization and the excitatory amino acids. Psychopharmacology, 115, 305–310.

    Article  PubMed  CAS  Google Scholar 

  • Kaufman, M. J., Spealman, R. D., & Madras, B. K. (1991). Distribution of cocaine recognition sites in monkey brain. In vitro autoradiography with [3H]CFT. Synapse, 9, 177–187.

    Google Scholar 

  • Kennedy, L. T., & Hanbauer, I. (1983). Sodium sensitive cocaine binding to rat striatal membrane: Possible relationship to dopamine uptake. Journal of Neurochemistry, 41, 172–178.

    Article  PubMed  CAS  Google Scholar 

  • Kitayama, S., Shimada, S., Xu, H., Markham, L., Donovan, D. M., & Uhl, G. R. (1992). Dopamine transporter site-directed mutations differentially alter substrate transport and cocaine binding. Proceedings of the National Academy of Science, 89, 7782–7785.

    Article  CAS  Google Scholar 

  • Kleber, H. D. (1995). Pharmacotherapy, current and potential, for the treatment of cocaine dependence. Clinical Neuropharmacology, 18 (Suppl. 1), S96-S 109.

    Google Scholar 

  • Kloner, R. A., Hale, S., Alker, K., & Rezkalla, S. (1992). The effects of acute and chronic cocaine use on the heart. Circulation, 85, 407–419.

    Article  PubMed  CAS  Google Scholar 

  • Kosikowski, A. P., Salah, M. K. E., Johnson, K. M., & Bergmann, J. M. (1995). Chemistry and biology of the 23-alkyl-33-phenyl analogues of cocaine: Subnanomolar affinity ligands that suggest a new pharmacophore at the C-2 position. Journal of Medicinal Chemistry, 38, 3086–3093.

    Article  Google Scholar 

  • Lakoski, J. M., & Cunningham, K. A. (1988). Cocaine interaction with central monoaminergic systems: Electrophysiological approaches. Trends in Pharmacological Science, 9, 177–180.

    Article  CAS  Google Scholar 

  • Laruelle, M., Baldwin, R. M., Malison, R. T., Zea-Ponce, Y., Zoghbi, S. S., Al-Tikriti, M., Sybirska, E. H., Zimmermann, R. C., Wisniewski, G., Neumeyer, J. L., Milius, R. A., Wang, R. A., Smith, E. O., Roth, R. H., Charney, D., Hoffer, P. B., & Innis, R. B. (1993). SPECT imaging of dopamine and serotonin transporters with [I-123] beta-CIT: Pharmacological characterization of brain uptake in non-human primates. Synapse, 13, 295–309.

    Article  PubMed  CAS  Google Scholar 

  • Levin, S. R., & Welch, K. M. A. (1988). Cocaine and stroke: Current concepts of cerebrovascular disease. Stroke, 19, 779–7883.

    Article  Google Scholar 

  • Lichtenfeld, P. J., Rubin, D. B., & Feldman, R. S. (1984). Subarachnoid hemorrhage precipitated by cocaine snorting. Archives of Neurology, 41, 223–224.

    Article  PubMed  CAS  Google Scholar 

  • Lienau, A. K., & Kuschinsky, K. (1997). Sensitization phenomena after repeated administration of cocaine or D-amphetamine in rats: Associative and non-associative mechanisms and the role of dopamine in the striatum. Naunyn Schmiedehergs Archives of Pharmacology, 355, 531–537.

    Article  CAS  Google Scholar 

  • Logan, J., Fowler, J. S., Volkow, N. D., Wolf, A. P., Dewey, S. L., Schlyer, D. J., MacGregor, R. R., Hitzemann, R., Bendirem, B., Gatley, S. J., & Christman, D. R. (1990). Graphical analysis of reversible radiolig and binding from time activity measurements applied to [N-“ C-methyl]-(-)cocaine PET studies in human subjects. Journal of Cerebral Blood Flow and Metabolism, 10, 740–747.

    Article  PubMed  CAS  Google Scholar 

  • London, E. D., Cascella, N. G., Wong, D. F., Phillips, R. L., Dannals, R. F., Links, J. M., Herning, R., Grayson, R., Jaffe, J. H., & Wagner, H. N. J. (1990). Cocaine-induced reduction of glucose utilization in human brain: A study using positron emission tomography and [Fluorine 18]-Fluorodeoxyglucose. Archives of General Psychiatry, 47, 567–574.

    Article  PubMed  CAS  Google Scholar 

  • Madden, J. A., & Powers, R. H. (1990). Effect of cocaine and cocaine metabolites on cerebral arteries in vitro. Life Sciences, 47, 1109–1114.

    Article  PubMed  CAS  Google Scholar 

  • Madras, B. K. (1994). “C-WIN 35,428 for detecting dopamine depletion in mild Parkinson’s disease. Annals of Neurology, 35, 376–377.

    Google Scholar 

  • Madras, B. K., & Kaufman, M. J. (1994). Cocaine accumulates in dopamine rich regions of primate brain after I.V. administration: Comparison with mazindol distribution. Synapse, 18, 261–275.

    Article  PubMed  CAS  Google Scholar 

  • Madras, B. K., Fahey, M. A., Bergman, J., Canfield, D. R., & Spealman, R. D. (1989). Effects of cocaine and related drugs in non-human primates. I [3H]Cocaine binding sites in caudate-putamen. Journal of Pharmacology and Experimental Therapeutics, 251, 131–141.

    PubMed  CAS  Google Scholar 

  • Madras, B. K., Spealman, R. D., Fahey, M. A., Neumeyer, J. L., Saha, J. K., & Milius, R. A. (1989). Cocaine receptors labeled by [3H]2b-carbomethoxy-3b-(4fluorophenyl)tropane. Molecular Pharmacology, 36, 518–524.

    PubMed  CAS  Google Scholar 

  • Masserano, J. M., Venable, D., & Wyatt, R. J. (1994). Effect of chronic cocaine administration on [3H]dopamine uptake in the nucleus accumbens, striatum and frontal cortex of rats. Journal of Pharmacology and Experimental Therapeutics, 270, 133–141.

    PubMed  CAS  Google Scholar 

  • Mattingly, B. A., Hart, T. C., Lim, K., & Perkins, C. (1994). Selective antagonism of dopamine D1 and D2 receptors does not block the development of behavioral sensitization to cocaine. Psychopharmacolog. 114, 239–242.

    Article  CAS  Google Scholar 

  • McElvain, J. S., & Schenk, J. O. (1992). A multisubstrate mechanism of striatal dopamine uptake and its inhibition by cocaine. Biochemical Pharmacology, 43, 2189–2199.

    Article  PubMed  CAS  Google Scholar 

  • Meehan, S. M., & Schechter, M. D. (1995). Cocaethyleneinduced lethality in mice is potentiated by alcohol. Alcohol, 12, 383–385.

    Article  PubMed  CAS  Google Scholar 

  • Meltzer, P. C., Liang, A. Y., Brownell, A. L., Elmaleh, D. R., & Madras, B. K. (1993). Substituted 3-phenyltropane analogs of cocaine: Synthesis and inhibition of binding at cocaine recognition sites, and positron emission tomography imaging. Journal of Medicinal Chemistry, 36, 855–862.

    Article  PubMed  CAS  Google Scholar 

  • Meltzer, P. C., Liang, A. Y., & Madras, B. K. (1994). The discovery of an unusually selective and novel cocaine analog: Difluoropine (0–620). synthesis and inhibition of binding at cocaine recognition sites. Journal of Medicinal Chemistry, 37, 2001–2010.

    Article  PubMed  CAS  Google Scholar 

  • Mule, S. J., Casella, G. A., & Misra, A. L. (1976). Intracellular disposition of [3H]cocaine, [3H]norcocaine, [3H]benzoylecgonine and [3H]benzoylnorecgonine in the brain of rats. Life Sciences, 19, 1585–1596.

    Article  PubMed  CAS  Google Scholar 

  • Nayak, P. K., Misra, A. L., & Mulé, S. J. (1976). Physiological disposition and biotransformation of [3H]cocaine in acutely and chronically treated rats. Journal of Pharmacology and Experimental Therapeutics, 196, 556–569.

    PubMed  CAS  Google Scholar 

  • Nicolaysen, L. C., Pan, H. T., & Justice, J. B., Jr. (1988). Extracellular cocaine and dopamine concentrations are linearly related in rat striatum. Brain Research, 456, 317–323.

    Article  PubMed  CAS  Google Scholar 

  • Parran, T. V, & Jasinski, D. R. (1991). Intravenous methylphenidate abuse: Prototype for prescription drug abuse. Archives of Internal Medicine, 151, 781–783.

    Article  PubMed  Google Scholar 

  • Parsons, L. H., & Justice, J. B. (1994). Quantitative approaches to in vivo brain microdialysis. Critical Review of Neurobiology 8, 189–220.

    CAS  Google Scholar 

  • Perez-Reyes, M., & Jeffcoat, A. R. (1992). Ethanol/cocaine interaction: Cocaine and cocaethylene plasma concentrations and their relationship to subjective and cardiovascular effects. Life Sciences, 51, 553–563.

    Article  PubMed  CAS  Google Scholar 

  • Peterson, K. I., Logan, B. K., & Christian, G. D. (1995). Detection of cocaine and its polar transformation products and metabolites in human urine. Forensic Science International, 73, 183–196.

    Article  PubMed  CAS  Google Scholar 

  • Pettit, H. O., & Justice, J. B., Jr. (1989). Dopamine in the nucleus accumbens during cocaine self-administration as studied by in vivo microdialysis. Pharmacology, Biochemistry and Behavior, 34, 899–904.

    Article  CAS  Google Scholar 

  • Pettit, H. O., Pan, H.-T., Parsons, L. H., & Justice, J. B. (1990). Extracellular concentrations of cocaine and dopamine are enhanced during chronic cocaine administration. Journal of Neurochemistry, 55, 798–804.

    Article  PubMed  CAS  Google Scholar 

  • Pitts, D. K., & Marwah, J. (1987). Electrophysiological actions of cocaine on noradrenergic neurons in rat locus ceruleus. Journal of Pharmacology and Experimental Therapeutics, 240, 345–351.

    PubMed  CAS  Google Scholar 

  • Porrino, L. J. (1993). Functional consequences of acute cocaine treatment depend on route of administration. Psychopharmacology, 112, 343–351.

    Article  PubMed  CAS  Google Scholar 

  • Post, R. M. (1975). Cocaine psychoses: A continuum model. American Journal of Psychiatry, 132, 225–231.

    PubMed  CAS  Google Scholar 

  • Post, R. M., & Rose, H. (1976). Increasing effects of repetitive cocaine administration in the rat. Nature, 260, 731–732.

    Article  PubMed  CAS  Google Scholar 

  • Preston, K. L., Sullivan, J. T., Berger, P., & Bigelow, G. E. (1993). Effects of cocaine alone and in combination with mazindol in human cocaine abusers. Journal of Pharmacology and Experimental Therapeutics, 258, 296–307.

    Google Scholar 

  • Pristupa, Z. B., Wilson, J. M., Hoffman, B. J., Kish, S. J., & Niznik, H. B. (1994). Pharmacological heterogeneity of the cloned and native human dopamine transporter: Disassociation of the [3H]WIN 35,428 and [3H]GBR 12,935 binding. Molecular Pharmacology 45, 125–135.

    PubMed  CAS  Google Scholar 

  • Przywara, D. A., & Dambach, G. E. (1989). Direct actions of cocaine on cardiac cellular activity. Circulation Research, 65, 185–192.

    Article  PubMed  CAS  Google Scholar 

  • Qiao, J.-T, Dougherty, P. M., Wiggins, R. C., & Dafny, N. (1990). Effects of microiontophoretic application of cocaine, alone and with receptor antagonists, upon the neurons of the medial prefrontal cortex, nucleus accumbens and caudate nucleus of rats. Neuropharmacology, 29, 379–385.

    Article  PubMed  CAS  Google Scholar 

  • Rall, T. W. (1993) Hypnotics and sedatives: Ethanol. In A. Goodman-Gilman, L. S. Goodman, T. W Rall, & F. Murad (Eds.), Goodman and Gilman’s the pharmacological basis of therapeutics (pp. 345–382 ). New York: Macmillan.

    Google Scholar 

  • Rao, A. N., Polos, P. G., & Walther, F. A. (1990). Crack abuse and asthma: A fatal combination. New York State Journal of Medicine, 90, 511–512.

    PubMed  CAS  Google Scholar 

  • Rech, R. H., Vomachka, M. K., Rickert, D., & Braude, M. C. (1976). Interactions between amphetamine and alcohol, and their effects on rodent behavior. Annals of the New York Academy of Science, 281, 426–440.

    Article  CAS  Google Scholar 

  • Reith, M. E. A., Benuck, M., & Lajtha, A. (1987). Cocaine disposition in the brain after continuous or intermittent treatment and locomotor stimulation in mice. Journal of Pharmacology and Experimental Therapeutics, 243, 281–287.

    CAS  Google Scholar 

  • Reith, M. E. A., DeCosta, B., Rice, K. C., & Jacobson, A. E. (1992). Evidence for mutually exclusive binding of cocaine, BTCP, GBR 12935 and dopamine to the dopamine transporter. European Journal of Pharmacology, 227, 417–425.

    Article  PubMed  CAS  Google Scholar 

  • Reith, M. E. A., Coffey, L. L., Xu, C., & Chen, N. H. (1994). GBR 12909 and GBR 12935 block dopamine uptake into brain synaptic vesicles as well as nerve endings. European Journal of Pharmacology, 253, 175–178.

    Article  PubMed  CAS  Google Scholar 

  • Ritchie, J. M., & Greene, N. M. (1993). Local anesthetics. In A. Goodman-Gilman, T. N. Rall, A. S. Nies, & P. Taylor (Eds.), Goodman and Gilman’s the pharmacological basis of therapeutics ( 8th ed., pp. 311–331 ). New York: Macmillan.

    Google Scholar 

  • Ritz, M. C., Lamb, R. J., Goldberg, S. R., & Kuhar, M. J. (1987). Cocaine receptors on dopamine transporters are related to self administration of cocaine. Science, 237, 1219–1223.

    Article  PubMed  CAS  Google Scholar 

  • Ritz, M. C., Cone, E. J., & Kuhar, M. J. (1990). Cocaine inhibition of ligand binding at dopamine norepinephrine and serotonin transporters: A structure-activity study. Life Sciences, 46, 635–645.

    Article  PubMed  CAS  Google Scholar 

  • Roth, L., Harbison, R. B., James, R. C., Tobin, T., & Roberts, S. M. (1992). Cocaine hepatotoxicity: Influence of hepatic enzyme inducing and inhibiting agents on the site of necrosis. Hepatology, 15, 934–940.

    Article  PubMed  CAS  Google Scholar 

  • Rothman, R. B. (1990). High affinity dopamine reuptake inhibitors as potential cocaine antagonists: A strategy for drug development. Life Sciences, 46, PLI7–PL21.

    Article  Google Scholar 

  • Rothman, R. B., Mele, A., Reid, A. A., Hyacinth, C. A., Greg, N., Thurkauf, A., DeCosta, B. R., Rice, K. C., & Pert, A. (1991). GBR 12909 antagonizes the ability of cocaine to elevate extracellular levels of dopamine. Pharmacology, Biochemistry and Behavior, 40, 387–397.

    Article  CAS  Google Scholar 

  • Rothman, R. B., Grieg, N., Kim, A., De Costa, B. R., Rice, K. C., Carroll, E, & Pert, A. (1992). Cocaine and GBR 12909 produce equivalent motoric responses at different occupancy of the dopamine transporter. Pharmacology, Biochemistry and Behavior, 43, 1135–42.

    Article  CAS  Google Scholar 

  • Rothman, R. B., Becketts, K. M., Radesca, L. R., DeCosta, B. R., Rice, K. C., Carroll, F. I., & Dersch, C. M. (1993). Studies of the biogenic amine transporters: II. A brief study on the use of [3H]DAuptake-inhibition to transporter-binding-inhibition ratios for the in vitro evaluation of putative cocaine antagonists. Life Sciences, 53, PL267–PL272.

    Article  PubMed  CAS  Google Scholar 

  • Seeman, P. (1993). Receptor tables. Volume 2: Drug dissociation constants for neuroreceptors and transporters. Toronto, Ontario, Canada: SZ Resarch.

    Google Scholar 

  • Seidman, M. H., Lau, C. E., Chen, R., & Falk, J. L. (1992). Orally self-administered cocaine: Reinforcing efficacy by the place preference method. Pharmacology, Biochemistry and Behavior, 43, 235–241.

    Article  CAS  Google Scholar 

  • Self, D. W, & Nestler, E. J. (1995). Molecular mechanisms of drug reinforcement and addiction. Annual Review of Neuroscience, 43, 463–495.

    Article  Google Scholar 

  • Sharkey, J., Glen, K. A., Wolfe, S., & Kuhar, M. J. (1988). Cocaine binding at sigma receptors. European Journal of Pharmacology, 149, 171–174.

    Article  PubMed  CAS  Google Scholar 

  • Sharkey, J., Ritz, M. C., Schenden, J. A., Hanson, R. C., & Kuhar, M. J. (1988). Cocaine inhibits muscarinic cholinergic receptors in heart and brain. Journal of Pharmacology and Experimental Therapeutics, 246, 1048–1052.

    PubMed  CAS  Google Scholar 

  • Sharpe, L. G., Pilotte, N. S., Mitchell, W. M., & DeSouza, E. B. (1991). Withdrawal of repeated cocaine decreases autoradiographic [3H]mazindol labelling of dopamine transporter in rat nucleus accumbens. European Journal of Pharmacology, 203, 141–144.

    Article  PubMed  CAS  Google Scholar 

  • Shuster, L., Yu, G., & Bates, A. (1977). Sensitization to cocaine stimulation in mice. Psychopharmacologv, 52, 185–190.

    Article  CAS  Google Scholar 

  • Simoni, D., Stoelwinder, J., Kozikowski, A. P., Johnson, K. M., Bergmann, J. S., & Ball, R. G. (1993). Methoxylation of cocaine reduces binding affinity and produces compounds of differential binding and dopamine uptake inhibitory activity: Discovery of a weak cocaine “antagonist.” Journal of Medicinal Chemistry, 36, 3975–3977.

    Article  PubMed  CAS  Google Scholar 

  • Sisti, N. J., Fowler, F. W, & Fowler, J. S. (1989). The flash vacuum thermolysis of (-)-cocaine. Tetrahedron Letters, 30, 5977–5980.

    Article  CAS  Google Scholar 

  • Snyder, W. S., Cook, M. J., Nasset, E. S., Karhausen, L. R., Parry-Howells, G., & Tipton, I. H. (1975). Report on the task group on Reference Man (ICRP Publication 23 ). Oxford, England: Pergamon.

    Google Scholar 

  • Sorg, B. A., & Ulibarri, C. (1995). Application of a protein synthesis inhibitor into the ventral tegmental area, but not the nucleus accumbens, prevents behavioral sensitization to cocaine. Synapse, 20, 217–224.

    Article  PubMed  CAS  Google Scholar 

  • Spealman, R. D., Goldberg, S. R., Kelleher, R. T., Morse, W. H., Goldberg, D. M., Hakansson, C. G., Nieforth, K. A., & Lazer, E. S. (1979). Effects of norcocaine and some norcocaine derivatives on schedule-controlled behavior of pigeons and squirrel monkeys. Journal of Pharmacology and Experimental Therapeutics, 210, 196–205.

    PubMed  CAS  Google Scholar 

  • Spealman, R. D., Kelleher, R. T., & Goldberg, S. R. (1983). Stereoselective effects of cocaine and a phenyltropane analog. Journal of Pharmacology and Experimental Therapeutics, 225, 509–514.

    PubMed  CAS  Google Scholar 

  • Staley, J. K., Hearn, W. L., Ruttenber, A. J., Wetli, C. V, & Mash, D. C. (1994). High affinity cocaine recognition sites on the dopamine transporter are elevated in fatal cocaine overdose victims. Journal of Pharmacology and Experimental Therapeutics, 271, 1678–1685.

    PubMed  CAS  Google Scholar 

  • Stein, E. A., & Fuller, S. A. (1993). Cocaine time action profile on regional cerebral blood flow in the rat. Brain Research, 626, 117–126.

    Article  PubMed  CAS  Google Scholar 

  • Stewart, D. J., Inaba, T., Tang, B. K., & Kalow, W. (1977). Hydrolysis of cocaine in human plasma by cholinesterase. Life Sciences, 20, 1557–1564.

    Article  PubMed  CAS  Google Scholar 

  • Stewart, D. J., Inaba, T., Lucassen, M., & Kalow, W. (1979). Cocaine metabolism: Cocaine and norcocaine hydrolysis by liver and serum esterases. Clinical Pharmacology and Therapeutics, 25, 464–468.

    PubMed  CAS  Google Scholar 

  • Stine, S. M., Krystal, J. H., Kosten, T. R., & Charney, D. S. (1995). Mazindol treatment for cocaine dependence. Drug and Alcohol Dependence, 39, 245–253.

    Article  PubMed  CAS  Google Scholar 

  • Strickland, T. L., Mena, I., Villanueva-Meyer, J., Miller, B. L., Cummings, J., Mehringer, C. M., Satz, P., Myers, H. (1993). Cerebral perfusion and neuropsychological consequences of chronic cocaine use. Journal of Neuropsvchiatry, 5, 1–9.

    Google Scholar 

  • Tella, S. R., & Goldberg, S. R. (1993). Monoamine uptake inhibitors alter cocaine pharmacokinetics. Psychopharmacology, 112, 497–502.

    Article  PubMed  CAS  Google Scholar 

  • Tumeh, S., Nagel, J. S., & English, R. J. (1990). Cerebral abnormalities in cocaine abusers: Demonstration by SPECT perfusion brain scintigraphy. Radiology, 176, 821–24.

    PubMed  CAS  Google Scholar 

  • Turkanis, S. A., Partlow, L. M., & Karler, R. (1989). Effects of cocaine on neuromuscular transmission in the lobster. Neuropharmacology, 18, 971–975.

    Article  Google Scholar 

  • Uchimura, N., & North, R. A. (1990). Actions of cocaine on rat nucleus accumbens neurones in vitro. British Journal of Pharmacology, 99, 736–740.

    Article  CAS  Google Scholar 

  • Ujike, H., Akiyama, K., & Otsuki, S. (1990). D-2 but not D-1 dopamine agonists produce augmented behavioral response in rats after subchronic treatment with methamphetamine or cocaine. Psychopharmacology, 102, 459–464.

    Article  PubMed  CAS  Google Scholar 

  • Van Dyke, C., & Byck, R. (1974) Cocaine: 1884–1974. In E. H. Elinwood (Ed.), Advances in behavioral biology (pp. 1–30 ). New York: Plenum.

    Google Scholar 

  • Van Dyke, C., Jatlow, P., lingerer, J., Barash, P. G., & Byck, R. (1978). Oral cocaine: Plasma concentrations and central effects. Science, 200, 211–213.

    Article  PubMed  Google Scholar 

  • Vezina, E, & Stewart, J. (1989). The effect of dopamine receptor blockade on the development of sensitization to the locomotor activating effects of amphetamine and morphine. Brain Research, 499, 108–120.

    Article  PubMed  CAS  Google Scholar 

  • Volkow, N. D., Mullani, N., Gould, K. L., Adler, S., & Krajewski, K. (1988). Cerebral blood flow in chronic cocaine users: A study with positron emission tomography. British Journal of Psychiatry, 152, 641–648.

    Article  CAS  Google Scholar 

  • Volkow, N. D., Hitzemann, R., Wolf, A. P., Logan, J., Fowler, J., Christman, D., Dewey, S., Schlyer, D., Burr, G., Vitkun, S., & Hirschowitz, J. (1990). Acute effects of ethanol on regional brain glucose metabolism and transport. Psychiatry Research, 35, 39–48.

    Article  CAS  Google Scholar 

  • Volkow, N. D., Fowler, J. S., Wolf, A. P., Hitzemann, R., Dewey, S. L., Bendriem, B., Alpert, R., & Hoff, A. (1991). Changes in brain glucose metabolism in cocaine dependence and withdrawal. American Journal of Psychiatry, 148, 621–626.

    PubMed  CAS  Google Scholar 

  • Volkow, N. D., Gillespie, H., Mullani, N., Tancredi, L., Grant, C., lvanovic, M., & Hollister, L. (1991). Cerebellar metabolic activation by delta-9-tetrahydrocannabinol in human brains: A study with positron emission tomography and 1“F-2-deoxy-2-fluoro-Dglucose. Psychiatric Research, 40, 69–80.

    Google Scholar 

  • Volkow, N. D., Fowler, J. S., Wolf, A. P., Wang, G.-J., Logan, J., MacGregor, R. R., Dewey, S. L., Schlyer, D. J., & Hitzemann, R. (1992). Distribution and kinetics of carbon-I I-cocaine in the human body measured with PET. Journal of Nuclear Medicine, 33, 521–525.

    PubMed  CAS  Google Scholar 

  • Volkow, N. D., Hitzemann, R., Wang, G.-J., Fowler, J. S., Wolf, A. P., Dewey, S. L., Burr, G., Piscani, K., Handlesman, L., & Hoff, A. (1992). Long term frontal brain metabolic changes in cocaine abusers. Synapse, 11, 184–190.

    Article  PubMed  CAS  Google Scholar 

  • Volkow, N. D., Fowler, J. S., Wang, G.-J., Hitzemann, R., Wolf, A. P., Logan, J., Schlyer, D., MacGregor, R. R., Angrist, B., Liebermann, J., Burr, G., & Pappas, N. (1993). PET studies of the function of the dopamine transporter in cocaine abusers. Journal of Nuclear Medicine, 34, 67.

    Google Scholar 

  • Volkow, N. D., Ding, Y.-S., Fowler, J. S., Wang, G.-J., Logan, J., Gatley, S. J., Dewey, S., Ashby, C., Lieber-mann, J., Hitzemann, R., & Wolf, A. P. (1995). Is methylphenidate like cocaine? Studies on their pharmacokinetics and distribution in human brain. Archives of General Psychiatry, 52, 456–463.

    Article  PubMed  CAS  Google Scholar 

  • Volkow, N. D., Fowler, J. S., Logan, J., Gatley, S. J., Dewey, S. L., MacGregor, R. R., Schlyer, D. J., Pappas, N., King, P., & Wolf, A. P. (1995). Comparison of [1 lC]cocaine binding at sub-pharmacological and pharmacological doses in baboon brain. Journal of Nuclear Medicine, 36, 1289–1297.

    PubMed  CAS  Google Scholar 

  • Volkow, N. D., Wang, G.-J., Hitzemann, R., Fowler, J. S., Burr, G., & Wolf, A. P. (1995). Recovery of brain glucose metabolism in detoxified alcoholics. American Journal of Psychiatry, 151, 178–183.

    Google Scholar 

  • Volkow, N. D., Wang, G. J., Fowler, J. S., Logan, J., Hitzemann, R., Gatley, S. J., Macgregor, R. R., & Wolf, A. P. (1996). Cocaine uptake is decreased in the brain of detoxified cocaine abusers. Neuropsychopharmacology, 14, 159–168.

    Article  PubMed  CAS  Google Scholar 

  • Wakasa, Y., Takada, K., & Yanagita, T. (1995). Reinforcing effect as a function of infusion speed in intravenous self-administration of nicotine in rhesus monkeys. Japanese Journal of Psychopharmacology, 15, 53–59.

    PubMed  CAS  Google Scholar 

  • Wall, S. C., Innis, R. B., & Rudnick, G. (1993). Binding of the cocaine analog 2b-carbomethoxy-3b-(4[’’-51]iodophenyl)tropane to serotonin and dopamine transporters: Different ionic requirements for substrate and 2(3-carbomethoxy-313-(4-r1]iodophenyl)tropane binding. Molecular Pharmacology, 43, 264–270.

    PubMed  CAS  Google Scholar 

  • Wang, G. J., Volkow, N. D., Logan, J., Fowler, J. S., Schlyer, D. J., MacGregor, R. R., Hitzemann, R. J., Gjedde, A., & Wolf, A. P. (1995). Serotonin 5-I1T2 receptor availability in chronic cocaine abusers. Life Sciences, 56, 299–303.

    Google Scholar 

  • Wang, G. J., Volkow, N. D., Hitzemann, R. J., Wong, C., Angrist, B., Burr, G., Pascani, K., Pappas, N., Lu, A., Cooper, T., & Lieberman, J. A. (1997). Behavioral and cardiovascular effects of intravenous methylphenidate in normal subjects and cocaine abusers. European Addiction Research, 3, 49–54.

    Article  Google Scholar 

  • White, E J., Hu, X.-T., & Henry, D. J. (1993). Electrophysiological effects of cocaine in the rat nucleus accumbens: Microiontophoretic studies. Journal of Pharmacology and Experimental Therapeutics. 166, 1075–1084.

    Google Scholar 

  • White, S. R., Harris, G. C., Imel, K. M., & Wheaton, M. J. (1995). Inhibitory effects of dopamine and methylenedioxymethamphetamine (MDMA) on glutamate-evoked firing of nucleus accumbens and caudate/putamen cells are enhanced following cocaine self-administration. Brain Research, 681, 167–176.

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson, P, VanDyke, C., Jatlow, P., Barash, P., & Byck, R. (1980). Intranasal and oral cocaine kinetics. Clinical Pharmacologic Therapeutics, 27, 386–394.

    Article  CAS  Google Scholar 

  • Wolf, M. E., & Jeziorski, M. (1993). Coadministration of MK-801 with amphetamine, cocaine or morphine prevents rather than transiently masks the development of behavioral sensitization. Brain Research, 613, 291–294.

    Article  PubMed  CAS  Google Scholar 

  • Wolf, M. E., White, F. J., Nassar, R., Brooderson, R. J., & Khansa, M. R. (1993). Differential development of autoreceptor subsensitivity and enhanced dopamine release during amphetamine sensitization. Journal of Pharmacology and Experimental Therapeutics, 264, 249–255.

    PubMed  CAS  Google Scholar 

  • Wolkin, A., Angrist, B., Wolf, A., Brodie, J., Wolkin, B., Jaeger, J., Cancro, R., & Rotrosen, J. (1987). Effects of amphetamine on local cerebral metabolism in normal and schizophrenic subjects as determined by positron emission tomography. Psychopharmacology, 92, 241–252.

    Article  PubMed  CAS  Google Scholar 

  • Wong, D. T., & Bymaster, F. P. (1978). An inhibitor of dopamine reuptake, LR5182, cis-3-(3,4-dichlorophenyl)-2-N,N-dimethy laminomethyl-bicyclo [2,2,2]octane, hydrochloride. Life Sciences, 23, 1041–1047.

    Article  PubMed  CAS  Google Scholar 

  • Yu, D. W., Gatley, S. J., Wolf, A. P., MacGregor, R. R., Dewey, S. L., Fowler, J. S., & Schlyer, D. (1992). Synthesis of carbon-11 labeled iodinated cocaine derivatives and their distribution in baboon brain measured using positron emission tomography. Journal of Medicinal Chemistry, 35, 2178–2183.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gatley, S.J., Gifford, A.N., Volkow, N.D., Fowler, J.S. (1998). Pharmacology of Cocaine. In: Tarter, R.E., Ammerman, R.T., Ott, P.J. (eds) Handbook of Substance Abuse. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-2913-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2913-9_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3297-6

  • Online ISBN: 978-1-4757-2913-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics