Skip to main content

The Molecular Mechanism of Interaction of H2O2 with Metmyoglobin

  • Chapter
Book cover Free Radicals, Oxidative Stress, and Antioxidants

Part of the book series: NATO ASI Series ((NSSA,volume 296))

  • 455 Accesses

Abstract

Slight changes in the intacellular redox equilibrium is a physiological situation utilized by nature to regulate many important cell functions (Sundaresan et al., 1995). However, when the level of the oxidizing substances produced exceeds a certain threshold it becomes deleterious for the cells (Halliwell and Gutteridge, 1989). The main source of oxidizing agents is the monovalent reduction of oxygen to superoxide anion and the subsequent formation of reactive oxygen intermediates (ROI) (Figure 1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allentoff, A.J., Bolton, J.L., Wilks, A., Thompson, J.A., and Ortiz de Montellano, P.R., 1992, Heterolytic versus homolytic peroxide bond cleavage by sperm whale myoglobin and myoglobin mutants, J. Am. Chem. Soc. 114: 9744–9749.

    Article  CAS  Google Scholar 

  • Arduini, A., Eddy, L., and Hochstein, P., 1990, Detection of ferrylmyoglobin in the isolated ischemic rat heart, Free Radic. Biol. Med. 9: 511–513.

    Article  CAS  Google Scholar 

  • Catalano, C.E., Choe, Y.S., and Ortiz de Montellano, P.R., 1989, Reactions of the protein radical in peroxide-treated myoglobin, J. Biol. Chem. 264: 10534–10541.

    CAS  Google Scholar 

  • Chance, B., 1952, The spectra of the enzyme-substrate complexes of catalase and peroxidases, Arch. Biochem. Biophys. 41: 404–415.

    Article  CAS  Google Scholar 

  • Eddy, L., Arduini, A., and Hochstein, P., 1990a, Reduction of ferrylmyoglobin in rat diaphragm, Am. J. Physiol. 259: C995–C997.

    CAS  Google Scholar 

  • Eddy, L., Hurvitz, R., and Hochstein, P., 1990b, A protective role for ascorbate in ischemic arrest associated with cardiopulmonary bypass, J. Appl. Cardiol. 5: 409–414.

    Google Scholar 

  • Evans, P.J., and Halliwell, B., 1995, Side-effects of drugs used in the treatment of rheumatoid arthritis, Biochem. Soc. Symp. 61: 195–207.

    CAS  Google Scholar 

  • Galaris D., and Korantzopoulos P., 1997, On the molecular mechanism of metmyoglobin-catalyzed reduction of hydrogen peroxide by ascorbate, Free Radic. Biol. Med. 22: 657–667.

    Article  CAS  Google Scholar 

  • Galaris, D., Mira, D., Sevanian, A., Cadenas, E., and Hochstein, P., 1988, Co-oxidation of salicylate and cholesterol and generation of electronically-excited states during the oxidation of metmyoglobin by H202, Arch. Biochem. Biophys. 281: 163–169.

    Article  Google Scholar 

  • Galaris, D., Cadenas, E., and Hochstein, P., 1989a, Glutathione-dependent reduction of peroxides during ferryland met-myoglobin interconversion: A potential protective mechanism in muscle, Free Radic. Biol. Med. 6: 473–478.

    Article  CAS  Google Scholar 

  • Galaris, D., Cadenas, E., and Hochstein, P., 19896, Redox-cycling of myoglobin and ascorbate: A potential protective mechanism against oxidative reperfusion injury in muscle, Arch. Biochem. Biophys. 273: 497–504.

    Google Scholar 

  • Galaris, D., Eddy, L. Arduini, A., Cadenas, E., and Hochstein, P., 1989c, Mechanisms of reoxygenation injury in myocardial infarction: Implication of a myoglobin redox cycle, Biochem. Biophys. Res. Commun. 160: 1162–1168.

    Article  CAS  Google Scholar 

  • Galaris, D., Kokkoris, S., Toumpoulis., I., and Tsolas, O., 1997, Generation of reactive species and arachidonic acid peroxidation during the oxidation of metmyoglobin by hydrogen peroxide, Submitted for publication.

    Google Scholar 

  • George, P., and Irvine, D.H., 1952, The reaction between metmyoglobin and hydrogen peroxide, Biochem. J. 52: 511–517.

    CAS  Google Scholar 

  • Giulivi, C., and Cadenas, E., 1993, The reaction of ascorbic acid with different heme iron states of myoglobin, FEBS Lett. 332: 287–290.

    Article  CAS  Google Scholar 

  • Giulivi, C., and Cadenas, E., 1994, Ferrylmyoglobin: Formation and chemical reactivity toward electron-donating compounds, Meth. Enzymol. 233: 189–202.

    Article  CAS  Google Scholar 

  • Giulivi, C., Romero, F.J., and Cadenas, E., 1992, The interaction of Trolox C, a water-soluble vitamin E analog with ferrylmyoglobin: Reduction of the oxoferryl moiety, Arch. Biochem. Biophys. 299: 302–312.

    Article  CAS  Google Scholar 

  • Grisham, M.B., 1985, Myoglobin-catalyzed hydrogen peroxide dependent arachidonic acid peroxidation, J. Free Radic. Biol. Med. 1: 227–232.

    Article  CAS  Google Scholar 

  • Gunther, M.R., Kelman, D.J., Corbett, J.T., and Mason, R.P., 1995, Self-peroxidation of metmyoglobin results in formation of an oxygen reactive tryptophan-centered radical, J. Biol. Chem. 270: 16075–16081.

    Article  CAS  Google Scholar 

  • Halliwell, B., and Gutteridge, J.M.C., 1989, Free Radicals in Biology and Medicine, 2nd ed., Clarendon Press, Oxford.

    Google Scholar 

  • Hanan T., and Shaklai, N., 1995, Peroxidative interaction of myoglobin and myosin, Eur. J. Biochem. 233: 930–936.

    Article  CAS  Google Scholar 

  • Harel, S., and Kanner, J., 1988, The generation of ferryl or hydroxyl radicals during interaction of haemproteins with hydrogen peroxide, Free Radic. Res. Commun. 5: 21–33.

    Article  CAS  Google Scholar 

  • Kanner, J., and Harel, S., 1985, Initiation of membranal lipid peroxidation by activated metmyoglobin and methemoglobin, Arch. Biochem. Biophys. 238: 314–321.

    Article  Google Scholar 

  • Kelman, D.J., DeGray, J.A., and Mason, R., 1994, Reaction of myoglobin with hydrogen peroxide forms a peroxyl radical which oxidizes substrates, J. Biol. Chem. 269: 7458–7463.

    CAS  Google Scholar 

  • King, N.K., and Winfield, M.E., 1963, The mechanism of metmyoglobin oxidation, J. Biol. Chem. 238: 1520–1528.

    CAS  Google Scholar 

  • Larahjinha, J., Almeida, L., and Madeira, V., 1995, Reduction of ferrylmyoglobin by dietary phenolic acid derivatives of cinamic acid, Free Radic. Biol. Med. 19: 329–337.

    Article  Google Scholar 

  • Larahjinha, J., Vieira, O., Almeida, L., and Madeira, V., 1996, Inhibition of metmyoglobin/H2O2-dependent low density lipoprotein lipid peroxidation by naturally occurring phenolic acids, Biochem. Pharmacol. 51: 395–402.

    Article  Google Scholar 

  • Mondai, M.S., and Mitra, S., 1996, Kinetic studies of the two-step reactions of H2O2 with manganese-reconstituted myoglobin, Biochim. Biophys. Acta, 1296: 174–180.

    Article  Google Scholar 

  • McCord, J., 1985, Oxygen-derived free radicals in post-ischemic tissue injury, New Engl. J. Med. 312: 159–163.

    Article  CAS  Google Scholar 

  • Newman, E.S.R., Rice-Evans, C.A., and Davies, M., 1991, Identification of initiating agents in myoglobin-induced lipid peroxidation, Biochem. Biophys. Res. Commun. 179: 1414–1419.

    Article  CAS  Google Scholar 

  • Osawa, Y., and Korzekwa, K., 1991, Oxidative modification by low levels of HOOH can transform myoglobin to an oxidase, Proc. Natl. Acad. Sci. USA 88: 7081–7085.

    Article  CAS  Google Scholar 

  • Osawa, Y., and Williams, M.S., 1996, Covalent crosslinking of the heme prosthetic group to myoglobin by H2O2: Toxicological implications, Free Radic. Biol. Med. 21: 35–41.

    Article  CAS  Google Scholar 

  • Ostdal, H., Daneshvar, B., and Skibsted, L.H., 1996, Reduction of ferrylmyoglobin by b-lactoglobulin, Free Radic. Res. 24: 429–438.

    Article  CAS  Google Scholar 

  • Puppo, A., and Halliwell, B., 1988, Formation of hydroxyl radicals in biological systems. Does myoglobin stimulate hydroxyl radical formation from hydrogen peroxide? Free Radic. Res. Commun. 6: 415–422.

    Article  Google Scholar 

  • Rao, S.I., Wilks, A., and Ortiz de Montellano, P.R., 1993, The role of His-64, Tyr-103, Tyr-146, and Tyr-151 in the epoxidation of styrene and beta-methylstyrene by recombinant sperm whale myoglobin, J. Biol. Chem. 268: 803–809.

    CAS  Google Scholar 

  • Rao, S.I., Wilks, A., Hamberg, M., and Ortiz de Montellano, P.R., 1994, The lipoxygenase activity of myoglobin. Oxidation of linoleic acid by the ferryl oxygen rather than protein radical, J. Biol. Chem. 269: 7210–7216.

    CAS  Google Scholar 

  • Romero, F.J., Ordonez, I., Arduini, A., and Cadenas, E., 1992, The reactivity of thiols and disulfides with different redox states of myoglobin, J. Biol. Chem. 267: 1680–1688.

    CAS  Google Scholar 

  • Sundarsan, M., Yu, Z-X., Ferrans, V.J., Irani, K., and Finkel, T., 1995, Requirement for generation of HO2 for platelet-derived growth factor signal transduction, Science, 270: 296–299.

    Article  Google Scholar 

  • Turner, J.J.O., Rice-Evans, C.A., Davies, M., and Newman, E.S.R., 1991, The formation of free radicals by cardiac myocytes under oxidative stress and the effects of electron-donating drugs, Biochem. J. 277: 833–837.

    CAS  Google Scholar 

  • Wilks A., and Ortiz de Montellano, P.R., 1992, Intramolecular translocation of the protein radical formed in the reaction of recombinant sperm whale myoglobin with H2O2, J. Biol. Chem. 267: 8827–8833.

    CAS  Google Scholar 

  • Yonetani, T., and Schleyer, H., 1967, Studies on cytochrom c peroxidase. IX. The reaction of ferrylmyoglobin with hydroperoxides and a comparison of peroxide-induced compounds of ferrylmyoglobin and cytochrom c peroxidase, J. Biol. Chem. 242: 1974–1979.

    CAS  Google Scholar 

  • Yusa, K., and Shikama, K., 1987, Oxidation of oxymyoglobin to metmyoglobin with hydrogen peroxide: Involvement of ferryl intermediate, Biochemistry 26: 6684–6688.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Galaris, D., Kokkoris, S., Toumpoulis, I., Korantzopoulos, P. (1998). The Molecular Mechanism of Interaction of H2O2 with Metmyoglobin. In: Özben, T. (eds) Free Radicals, Oxidative Stress, and Antioxidants. NATO ASI Series, vol 296. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-2907-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2907-8_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3292-1

  • Online ISBN: 978-1-4757-2907-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics