Skip to main content

Calibration and Linearization Techniques

  • Chapter
  • 298 Accesses

Part of the book series: The Springer International Series in Engineering and Computer Science ((SECS,volume 419))

Abstract

In the first part of this chapter we will identify and distinguish the different types of errors which affect the transfer of the sensor, and explain which errors can be corrected by calibration. In the following section we will explain different linearization techniques which can be used to calibrate the offset, gain, and linearity errors in the sensor transfer. In the last part we will propose and explain a polynomial calibration method which can be used to calibrate and linearize the sensor transfer in a step-by-step approach. It will be shown how the method can be expanded to a two-dimensional polynomial calibration to be used for calibration of a cross-sensitivity error.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.W. Gardner, Microsensors: principles and applications, John Wiley & Sons, New York, 1994.

    Google Scholar 

  2. W. Gopel, J. Hesse, and J. Zemel, “Sensors: A Comprehensive Study, Vol. 1: Fundamentals and General Aspects”, T. Grandke & W.H. Ko (Vol.eds.), VCH, Weinheim, 1989.

    Google Scholar 

  3. J.H. Huijsing and J.A. van Steenwijk, “A monolithic analog exponential converter”, IEEE Journal of Solid-State Circuits, Vol. 15, No. 2, 1980, pp. 162–168.

    Article  Google Scholar 

  4. J.E. Brignell, “Digital compensation of sensors”, Journal of Physics, Vol. E: Scientific Instrumentation, 1987, pp. 1097–1102.

    Google Scholar 

  5. J.E. Brignell, “Software techniques for sensor compensation”, Sensors and Actuators A, Vol. 2527, 1991, pp. 29–35.

    Google Scholar 

  6. P.P.L. Regtien and P.J. Trimp, “Dynamic calibration of sensors using EEPROMs”, Sensors and Actuators A, Vol. 21–23, 1990, pp. 615–618.

    Google Scholar 

  7. P.N. Mahana and F.N. Trofimenkoff, “Transducer output signal processing using an eight-bit microcomputer”, IEEE Trans. Instrumentation and Measurement, Vol. IM35, No. 2, June 1986, pp. 182–186.

    Google Scholar 

  8. C. de Boor, “A practical guide to splines”, Applied Mathematical Sciences, Vol. 27, Springer, New York, 1978.

    Google Scholar 

  9. P. Dierckx, Curve and surface fitting with splines, Oxford University Press, Oxford, 1993.

    MATH  Google Scholar 

  10. S.B. Crary, W.G. Baer, J.C. Cowles, and K.D. Wise, “Digital compensation of high performance silicon pressure transducers”, Sensors and Actuators A, Vol. 2123, 1990, pp. 70–72.

    Article  Google Scholar 

  11. S. Huang, R.Z. Morawski, and A. Barwicz, “Static calibration based on superposition of splines in one variable”, Proceedings IMTC’96, June 1996, pp. 49–53.

    Google Scholar 

  12. C. Berthoud, M. Ansorge, and F. Pellandini, “Effective static response compensation suitable for low-power asic implementation with an application to pressure sensors”, Proceedings IMTC’96, June 1996, pp. 1168–1173.

    Google Scholar 

  13. M.E. Snow and S.B. Crary, “The use of simulated annealing in the I-optimal design of experiments”, Michigan Academician XXIV, 1992, pp. 343–354.

    Google Scholar 

  14. S.B. Crary, L. Hoo, and M. Tennenhouse, “I-Optimality algorithm and implementation”, Computational Statistics, Y. Dodge and J. Whittaker (eds.), Proceedings of the 10th Symposium on Computational Statistics, Vol.2, Neuchâtel, Switzerland, 1992, pp. 209–213.

    Google Scholar 

  15. S.R. Ashley, M. Muggeridge, and J. Lucas, “An inexpensive digital linearizer for nonlinear transducers”, Journal of Physics E: Sci. Instrum., Vol. 11, 1978, pp. 576–580.

    Article  Google Scholar 

  16. W.T. Bolk, “A general digital linearising method for transducers”, Journal of Physics, Vol. E: Scientific Instrumentation, 1985, pp. 61–64.

    Google Scholar 

  17. D. Patranabis and D. Gosh, “A novel software-based transducer linearizer”, IEEE Trans. Instrumentation and Measurement, Vol. 36, No. 6, December 1989.

    Google Scholar 

  18. P. Malcovati, C.A. Leme, P. O’Leary, F. Maloberti, and H. Baltes, “Smart sensor interface with A/D conversion and programmable calibration”, IEEE Journal of Solid-State Circuits, Vol. 29, No. 8, August 1994, pp. 963–966.

    Article  Google Scholar 

  19. M. Yamada and K. Watanabe, “A capacitive pressure sensor interface using oversampling A—Z demodulation techniques”, IEEE Trans. Instrumentation and Measurement, Vol. 46, No. 1, February 1997, pp. 3–7.

    Article  Google Scholar 

  20. M. Gunawan, G.C.M. Meijer, J. Fonderie, and J.H. Huijsing, “A curvature-corrected low-voltage bandgap reference”, IEEE Journal of Solid-State Circuits, Vol. 28, No. 6, 1993, pp. 667–670.

    Article  Google Scholar 

  21. S. Kaliyugavaradan, P. Sankaran, and V.G.K. Murti, “A new compensation scheme for thermistors and its implementation for response linearization over a wide temperature range”, IEEE Trans. Instrumentation and Measurement, Vol. 42, No. 5, 1993, pp. 952–956.

    Article  Google Scholar 

  22. S. Kim and K.D. Wise, “Temperature sensitivity in silicon piezoresistive pressure transducers”, IEEE Trans. Electron Devices, Vol. ED-38, 1983, pp. 802–810.

    Google Scholar 

  23. H.-J. Kress, F. Bantien, J. Marek, and M. Willmann, “Silicon pressure sensor with integrated CMOS signal-conditioning circuit and compensation of temperature coefficient”, Sensors and Actuators A, Vol. 2527, 1991, pp. 21–26.

    Google Scholar 

  24. M. Akbar and M.A. Shanblatt, “Temperature compensation of piezoresistive pressure sensors”, Sensors and Actuators A, Vol. 33, 1992, pp. 155–162.

    Article  Google Scholar 

  25. K.F. Lyahou, G. v.d. Horn, and J.H. Huijsing, “A non-iterative polynomial 2-dimensional calibration method implemented in a microcontroller”, Proceedings IMTC’96, June 1996, pp. 62–67.

    Google Scholar 

  26. G. v.d. Horn and J.H. Huijsing, “Integrated smart sensor calibration”, J. Integrated Analog Circuits and Signal Processing, Vol. 14, No. 3, November 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

van der Horn, G., Huijsing, J.L. (1998). Calibration and Linearization Techniques. In: Integrated Smart Sensors. The Springer International Series in Engineering and Computer Science, vol 419. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-2890-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2890-3_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-5016-1

  • Online ISBN: 978-1-4757-2890-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics