Skip to main content

Semi-Infinite Programming in Orthogonal Wavelet Filter Design

  • Chapter

Part of the book series: Nonconvex Optimization and Its Applications ((NOIA,volume 25))

Abstract

Quadrature mirror filters can be introduced by studying algebraic properties of discrete input signals viewed as square summable infinite sequences together with linear operators, termed filters, which act linearly through convolution on the input signals. The algebra is readily revealed through operations on complex variable transfer functions which are formally associated with the filters. By using the space of transfer functions, one can define how a signal can be decomposed into two subsidiary signals which can then be combined, using only certain linear mappings all along throughout the entire process. Ideally, the original signal may be recovered, and in this case the term perfect reconstruction is used. In addition to ideal recovery, it is desired to impose orthogonality conditions on the subsidiary signals. These constraints imply that one need only concentrate on the optimality of one of the subsidiary signals to guarantee the optimality of the other. The orthogonality properties are associated with the term quadrature mirror filters.

We describe what optimality can mean within this special structure by making a transition to a description of statistical properties which are reasonably representative of the actual transmission of discrete signals and their recovery after transmission. The concept of coding gain is reviewed, and we show how this objective function may be combined with constraining relations on the coefficients of the (chosen) primary filter necessary to formally guarantee perfect reconstruction. The constraints lead to a nonlinear transformation of the original filter coefficients to variables that appear in an equivalent linear semi-infinite programming problem developed by the second author. We show how an optimal solution in the original filter-variables may be obtained from an LSIP optimal solution by spectral decomposition. Finally, we review some elementary duality-based sensitivity analysis and present some previously published numerical results (by us with other co-authors).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. C. Aas, K. A. Duell, and C. T. Mullis. Synthesis of extremal wavelet-generating filters using Gaussian quadrature. IEEE Trans. Sig. Proc, 43:1045–1057, 1995.

    Article  MATH  Google Scholar 

  2. P. N. Brown and Y. Saad. Hybrid Krylov methods for nonlinear systems of equations. SIAM J. Sc. Comput., 11:450–481, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  3. H. Caglar, Y. Liu, and A. N. Akansu. Statistically optimized PR-QMF design. SPIE, 1605:86–94, 1991.

    Article  Google Scholar 

  4. I. Daubechies. Ten Lectures on Wavelets. Number 61 in CBMS-NSF Regional Conference Series in Applied Mathematics. SIAM, Philadelphia, PA., 1992.

    Book  MATH  Google Scholar 

  5. P. Delsarte, B. Macq, and D. T. M. Slock. Signal-adapted multiresolution transform for image coding. IEEE Trans. Info. Theory, 38:897–904, 1992.

    Article  Google Scholar 

  6. J. Elzinga and T. G. Moore. A central cutting plane algorithm for the convex programming problem. Math. Programming, 8:134–145, 1975.

    Article  MATH  MathSciNet  Google Scholar 

  7. K. Georg and R. Hettich. On the numerical stability of the simplex algorithm: The package linop. Technical report, The University of Trier, Trier, Germany, April 1985.

    Google Scholar 

  8. K. Glashoff and S.-A. Gustafson. Linear Optimization and Approximation. Number 45 in Applied Mathematical Sciences. Springer-Verlag, Berlin-Heidelberg-New York, 1983.

    Book  MATH  Google Scholar 

  9. P. R. Gribik. A central cutting plane algorithm for semi-infinite programming problem. In R. Hettich, editor, Semi-Infinite Programming, number 15 in Lecture Notes in Control and Information Sciences, pages 66–82. Springer-Verlag, 1979.

    Chapter  Google Scholar 

  10. S. Gustafson and K. O. Kortanek. Numerical treatment of a class of semi-infinite programming problems. Naval Res. Logistics Quart., 20:477–504, 1973.

    Article  MATH  MathSciNet  Google Scholar 

  11. R. Hettich and K. O. Kortanek. Semi-infinite programming: theory, methods, and applications. SIAM Review, 35:380–429, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  12. N. S. Jayant and P. Noll. Digital Coding of Waveforms. Prentice-Hall, 1984.

    Google Scholar 

  13. K. O. Kortanek. Vector-supercomputer experiments with the linear programming primal affine scaling algorithm. SIAM J. Scientific and Statistical Computing, 14:279–294, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  14. K. O. Kortanek and H. No. A central cutting plane algorithm for convex semi-infinite programming problems. SIAM J. Optimization, 3:901–918, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  15. M. Lang and B.-C. Frenzel. Software available by anonymous ftp from cml.rice.edu:/pub/markus/software, 1992. ©1992–4 LNT.

    Google Scholar 

  16. M. Lang and B.-C. Frenzel. Polynomial root finding. IEEE Sig. Proc. Lett., 1:141–143, 1994.

    Article  Google Scholar 

  17. S. G. Mallat. A theory for multiresolution signal decomposition: The wavelet representation. IEEE Trans. on Pattern Analysis and Machine Intelligence, 11:674–693, 1989.

    Article  MATH  Google Scholar 

  18. Y. Meyer. Wavelets Algorithms & Applications. SIAM Society for Industrial and Applied Mathematics, Philadelphia, PA, 1993. Translated and Revised by Robert D. Ryan,.

    Google Scholar 

  19. P. Moulin, M. Anitescu, K. O. Kortanek, and F. Potra. Design of signal-adapted FIR paraunitary filter banks. In Proc. ICASSP, volume 3, pages 1519–1522, Atlanta, GA, 1996.

    Google Scholar 

  20. P. Moulin, M. Anitescu, K. O. Kortanek, and F. Potra. The role of linear semi-infinite programming in signal-adapted QMF bank design. IEEE Transactions on Signal Processing, 45:2160–2174, 1997.

    Article  Google Scholar 

  21. P. Moulin and K. M. Mihcak. Theory and design of signal-adapted FIR paraunitary filter banks. Technical report, The University of Illinois Beckmann Institute, Champaign/Urbana, IL, 1997. to appear in IEEE Transactions on Signal Processing, Special Issue on Applications of Wavelets and Filter Banks, 1998.

    Google Scholar 

  22. T. W. Parks and C. S. Burrus. Digital Filter Design. J. Wiley & Sons, 1987.

    MATH  Google Scholar 

  23. W. Press, B. Flannery, S. Teukolsky, and W. Vetterling. Numerical Recipes in C: The Art of Scientific Computing. Cambridge: Cambridge University Press, 1988.

    MATH  Google Scholar 

  24. R. Reemtsen. Discretization methods for the solution of semi-infinite programming problems. J. Opt. Theory and Appl., 71:85–103, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  25. O. Rioul and P. Duhamel. A Remez exchange algorithm for orthonormal wavelets. IEEE Trans. Circ. and Syst. IL An. and Dig. Sig. Proc, 41:550–560, 1994.

    MATH  Google Scholar 

  26. M. J. T. Smith and T. P. B. III. Exact reconstruction techniques for tree-structured subband coders. IEEE Trans. ASSP, 34:434–441, 1986.

    Article  Google Scholar 

  27. G. Strang and T. Nyugen. Wavelets and Filter Banks. Wellesley-Cambridge Press, Wellesley, MA, 1996.

    MATH  Google Scholar 

  28. M. Unser. An extension of the Karhunen-Loève transform for wavelets and perfect-reconstruction filterbanks. SPIE, 2034:45–56, 1883.

    Article  Google Scholar 

  29. B. Usevitch and M. T. Orchard. Smooth wavelets, transform coding, and Markov-1 processes. In Proc. ISCAS’93, pages 527–530, 1993.

    Google Scholar 

  30. P. P. Vaidyanathan. Multirate Systems and Filter Banks. Prentice-Hall, 1993.

    MATH  Google Scholar 

  31. P. P. Vaidyanathan and P.-Q. Hoang. Lattice structures for optimal design and robust implementation of two-channel perfect-reconstruction QMF banks. IEEE Trans. ASSP, 36:81–94, 1988.

    Article  Google Scholar 

  32. L. Vandendorpe. CQF filter banks matched to signal statistics. Signal Processing, 29:237–249, 1992.

    Article  MATH  Google Scholar 

  33. M. Vetterli and J. Kovacevic. Wavelets and Subband Coding. Prentice-Hall, 1995.

    MATH  Google Scholar 

  34. B. Xuan and R. H. Bamberger. Multi-dimensional, paraunitary principal component filter banks. In Proc. ICASSP’95, pages 1488–1491, Detroit, 1995.

    Google Scholar 

  35. A. Zygmund. Trigonometric Series. Cambridge University Press, 1959.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kortanek, K.O., Moulin, P. (1998). Semi-Infinite Programming in Orthogonal Wavelet Filter Design. In: Reemtsen, R., Rückmann, JJ. (eds) Semi-Infinite Programming. Nonconvex Optimization and Its Applications, vol 25. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-2868-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2868-2_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-4795-6

  • Online ISBN: 978-1-4757-2868-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics