Skip to main content
Book cover

Vitamin D pp 101–107Cite as

The Vitamin D Binding Protein and Its Clinical Significance

  • Chapter
  • 328 Accesses

Part of the book series: Nutrition and Health ((NH))

Abstract

The plasma protein that transports vitamin D and its metabolites [vitamin D binding protein (DBP)] was first recognized as a postalbumin component of human sera during electrophoretic analyses (1). Subsequently, the identity of this group-specific component (Gc-globulin) and plasma DBP was discovered (2) and confirmed (3). The protein is synthesized in the liver and displays features homologous with albumin and α-fetoprotein (4). Neither of the latter proteins binds vitamin D sterols with high affinity, however. DBP is 122 amino acids shorter than albumin and α-fetoprotein, and the genes of all three of these proteins map to human chromosome 4g11–22 (4).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Weitkamp LR, Rucknagel DL, Gershowitz H. Genetic linkage between structural loci for albumin and group specific component (Gc). Am J Hum Genet 1966; 18: 559–571.

    PubMed  CAS  Google Scholar 

  2. Daiger SP, Schanfield MS, Cavalli-Sforza LL. Human group-specific component (Gc) proteins bind vitamin D and 25-hydroxy vitamin D. Proc Natl Acad Sci USA 1975; 72: 2076–2080.

    Article  PubMed  CAS  Google Scholar 

  3. Haddad JG. Traffic, binding and cellular access of vitamin D sterols. In: Bone and Mineral Research, vol. 5. Peck WA, ed. New York: Elsevier, 1987; 281–308.

    Google Scholar 

  4. Cooke NE, Haddad JG. Vitamin D binding protein (Gc-globulin). Endocr Rev 1989; 10: 294–307.

    Article  PubMed  CAS  Google Scholar 

  5. Braun A, Bichlmaier R, Cleve H. Molecular analysis of the gene for the human vitamin D-binding protein (Gc): allelic differences of the common genetic Gc types. Hum Genet 1992; 89: 401–406.

    Article  PubMed  CAS  Google Scholar 

  6. Haddad JG. Clinical aspects of measurements of plasma vitamin D sterols and the vitamin D binding protein. In: Disorders of Bone and Mineral Metabolism. Coe FL, Favus MJ, eds. New York: Raven, 1992; 195–216.

    Google Scholar 

  7. Bike, DD, Gee E, Halloran B, Haddad JG. Free 1, 25 (OH)2D levels in serum from normal subjects, pregnant subjects and subjects with liver disease. J Clin Invest 1984; 74: 1966–1971.

    Article  Google Scholar 

  8. Kawakami M, Blum CB, Ranakrishman R, Dell RB, Goodman DS. Turnover of the plasma binding protein for vitamin D and its metabolites in normal human subjects. J Clin Endocrinol Metab 1981; 53: 1110–1116.

    Article  PubMed  CAS  Google Scholar 

  9. Haddad JG, Fraser DR, Lawson DEM. Vitamin D binding protein: turnover and fate in the rabbit. J Clin Invest 1981; 67: 1550–1560.

    Article  PubMed  CAS  Google Scholar 

  10. Harper KD, McLeod JF, Kowalski MA, Haddad JG. Vitamin D binding protein sequesters monomeric actin in the circulation of the rat. J Clin Invest 1987; 79: 1365–1370.

    Article  PubMed  CAS  Google Scholar 

  11. Mendel CM. The free hormone hypothesis: a physiologically based mathematical model. Endocr Rev 1989; 10: 232–274.

    Article  PubMed  CAS  Google Scholar 

  12. Bikle DD, Siiteri BK, Ryzen E, Haddad JG. Serum protein binding of 1,25-OH)2D: a re-evaluation by direct measurement of free metabolite levels. J Clin Endocr Metab 1985; 61: 969–975.

    Article  PubMed  CAS  Google Scholar 

  13. Bikle DD, Gee E, Halloran BP, Kowalski MA, Ryzen E, Haddad JG. Assessment of the free fraction of 25-OHD in serum and its regulation by albumin and the vitamin D binding protein. J Clin Endocrinol Metab 1986; 63: 954–959.

    Article  PubMed  CAS  Google Scholar 

  14. Bikle DD, Halloran BP, Ryzen E, Kowalski MA, Haddad JG. Free 25-OHD levels are normal in subjects with liver disease and reduced total 25-OHD levels. J Clin Invest 1986; 78: 748–752.

    Article  PubMed  CAS  Google Scholar 

  15. Pettifor JM, Bikle DD, Cavaleros M, Zachen D, Kamdar MC, Ross FP. Serum levels of free 1,25(OH)2D in vitamin D toxicity. Ann Intern Med 1995; 122: 511–513.

    PubMed  CAS  Google Scholar 

  16. Dueland S, Pedersen JI, Helgerud P, Drevon CA. Absorption, distribution and transport of vitamin D in the rat. Am J Physiol 1983; 245: E463–469.

    PubMed  CAS  Google Scholar 

  17. Haddad JG, Matsuoka LY, Hollis BW, Hu YZ, Wortsman J Plasma transport of endogenously synthesized cholecalciferol. J Clin Invest 1993; 91: 2551–2555.

    Article  Google Scholar 

  18. Whyte M, Haddad JG, Waters DD, Stamp TCB. Vitamin D bioavailability: serum 25-OHD levels in man after oral, subcutaneous, intramuscular and intravenous vitamin D administration. J Clin Endocrinol Metab 1979; 48: 906–911.

    Article  PubMed  CAS  Google Scholar 

  19. Stanbury SW, Mawer EB. Vitamin D metabolism in man: contributions from clinical studies. In: Clinical Disorders of Bone and Mineral Metabolism. Frame B, Potts JT, eds. Amsterdam: Excerpta Medica, 1983; 72–76.

    Google Scholar 

  20. Haddad JG, Stamp TCB. Circulating 25-OHD in man. Am J Med 1974; 57: 57–62.

    Article  PubMed  CAS  Google Scholar 

  21. McLeod J, Kowalski MA, Haddad JG. Interactions among serum vitamin D binding protein, monomeric actin, profilin and profilactin. J Biol Chem 1989; 264: 1260–1267.

    CAS  Google Scholar 

  22. Lee WM, Galbraith RM. The extracellular actin-scavenger system and actin toxicity. N Engl J Med 1992; 326: 1335–1341.

    Article  PubMed  CAS  Google Scholar 

  23. Haddad JG, Harper KD, Guoth M, Pietra GG, Sanger JW. Angiopathic consequences of saturating the plasma scavenger system for actin. Proc Natl Acad Sci USA 1990; 87: 1381–1385.

    Article  PubMed  CAS  Google Scholar 

  24. Vasconcellos CA, Lind SE. Coordinated inhibitors of actin-induced platelet aggregation by plasma gelsolin and DBP. Blood 1993; 12: 3648–3657.

    Google Scholar 

  25. Lees A, Haddad JG, Lin S. Brevin and DBP comparison of the effects of two serum proteins on actin assembly and disassembly. Biochemistry 1984; 23: 3038–3047.

    Article  PubMed  CAS  Google Scholar 

  26. Korn ED. Actin polymerization and its regulation by proteins from nonmuscle cells. Physiol Rev 1982; 62: 672–737.

    PubMed  CAS  Google Scholar 

  27. Hermannsdoerfer Ai, Heeb GT, Fenstel Pi, Estes JE, Keenan CJ, Minnear FL, Selden L, Giunta C, Flor JR, Blumenstock FA. Vascular clearance and organ uptake of G- and F-actin in the rat. Am J Physiol 1993; 265: G1071–1081.

    Google Scholar 

  28. Young WO, Goldschmidt-Clermont PJ, Emerson DL, Lee WM, Jollow DJ, Galbraith RM. Correlation between extent of liver damage in fulminant hepatic necrosis and complexing of group-specific component (DBP). J Lab Clin Med 1987; 110: 83–90.

    PubMed  CAS  Google Scholar 

  29. Lind SE, Smith DB, Janmey PA, Stossel TP. Depression of gelsolin levels and detection of gelsolinactin complexes in plasma of patients with acute lung injury. Am Rev Respir Dis 1988; 138: 429–434.

    PubMed  CAS  Google Scholar 

  30. Metcalf JP, Thompson AB, Gossman GL, Nelson KJ, Koyama S, Rennard SI, Robbins RA. Gc-globulin functions as a cochemotoxin in the lower respiratory tract. Am Rev Respir Dis 1991; 143: 844–849

    Google Scholar 

  31. Cooke NE, Haddad JG. Vitamin D-binding protein (Gc-globulin): update 1995. Endocrinol Rev 1995; 4: 125–128.

    CAS  Google Scholar 

  32. Guoth M. Murgia A, Smith R, Prystowsky M, Cooke N, Haddad J. Cell surface vitamin D binding protein (Gc-globulin) is acquired from plasma. Endocrinology 1990; 127: 2313–2321.

    Article  PubMed  CAS  Google Scholar 

  33. Esteban C, Geuskens M, Ena JM, Mishal Z, Macho A, Torres JM, Uriel J. Receptor-mediated uptake and processing of vitamin D-binding protein in human 13-lymphoid cells. J Biol Chem 1992; 267: 10, 177–10, 183.

    Google Scholar 

  34. Kew RR, Mollison KW, Webster RO. Binding of Gc globulin (DBP) to C5a or C5a des Arg is not necessary for co-chemotactic activity. J Leukoc Biol 1995; 58: 55–58.

    PubMed  CAS  Google Scholar 

  35. Kew RR, Webster RO. Gc-globulin (DBP) enhances the neutrophil chemotactic activity of C5a and C5a des Arg. J Clin Invest 1988; 82: 364–369.

    Article  PubMed  CAS  Google Scholar 

  36. Petrini M, Emerson DL, Galbraith RM. Linkage between surface immunoglobulin and cytoskeleton of B-lymphocytes may involve Gc-protein. Nature 1983; 306: 73–75.

    Article  PubMed  CAS  Google Scholar 

  37. Yamamato N, Lindsay DD, Naraparaju R, Ireland RA, Popoff SN. A defect in the inflammation-primed macrophage-activation cascade in osteopetrotic rats J Immunol 1994; 152: 100–107.

    Google Scholar 

  38. Schneider GB, Benis KA, Flay NW, Ireland RA, Popoff SN. Effects of vitamin D binding protein-macrophage activating factor (DBP-MAF) infusion on bone resorption in two osteopetrotic mutations. Bone 1995; 6: 657–662.

    Article  Google Scholar 

  39. Kew RR, Fisher JA, Webster RO. Co-chemotactic effect of Gc-globulin (DBP) for C5a. transient conversion into an active co-chemotaxin by neutrophils. J Immunol 1995; 155: 5369–5374.

    PubMed  CAS  Google Scholar 

  40. Robbins RA, Hamel FG. Chemotactic factor inactivator interaction with Gc-globulin (DBP). a mechanism of modulating the chemotactic activity of C5a. J Immunol 1990; 14: 2371–2376.

    Google Scholar 

  41. Naraparaju VR, Yamamoto N. Roles of 3-galactosidase of B lymphocytes and sialidase of T lymphocytes in inflammation-primed activation of macrophages. Immunol Lett 1994; 43: 143–148.

    Article  PubMed  CAS  Google Scholar 

  42. Yamamoto N, Homma S, Haddad JG, Kowalski MA. Vitamin D binding protein required for in vitro activation of macrophages after alkylglycerol treatment of mouse peritoneal cells. Immunology 1991; 74: 420–424.

    PubMed  CAS  Google Scholar 

  43. Hammond GL. Potential functions of plasma steroid-binding proteins. Trends Endocrinol Metab 1995; 6: 298–304.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Haddad, J.G. (1999). The Vitamin D Binding Protein and Its Clinical Significance. In: Holick, M.F. (eds) Vitamin D. Nutrition and Health. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-4757-2861-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2861-3_6

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-2863-7

  • Online ISBN: 978-1-4757-2861-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics