Skip to main content

Metal accumulation and detoxification in humans

  • Chapter
Metal Metabolism in Aquatic Environments

Abstract

Metals are probably the oldest known toxins. About 80 of the 105 elements in the periodic table are regarded as metals, but fewer than 30 have been reported to produce toxicity in humans (Goyer, 1996). Many metals are important as micronutrients and play an essential role in tissue metabolism and growth. They include Co, Cu, Cr, Fe, Mn, Ni, Mo, Se, Sn, V and Zn. Insufficient intake of these metals results in diseases or growth retardation. Other metals, such as Pb, Cd and Hg, are non-essential, i.e. have no known biological functions and no perceived effect on deficiency. Arsenic has been proposed as an essential metal in vertebrates and some mammals (Nielsen and Uthus, 1984) but there is no known deficiency in humans. Overexposure to both essential and non-essential metals results in toxicity. Therefore, over the course of evolution, humans have developed highly regulated metabolic pathways to maintain the essential metals at optimal concentration ranges and detoxification mechanisms for many of the non-essential toxic metals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aberg, B., Ekman, R., Falk, U. et al (1969) Metabolism of methylmercury (203Hg) compounds in man: excretion and distribution. Arch. Environ. Health 19, 478–484.

    CAS  Google Scholar 

  • Al-Shahristani, J., Shihab, K.M. and Al-Haddad, J.K. (1976) Mercury in hair as an indicator of total body burden. Bull. WHO (Suppl.) 53, 105–112.

    Google Scholar 

  • Andreae, M.O. (1977) Determination of arsenic species in natural waters. Anal. Chem. 49, 820–823.

    CAS  Google Scholar 

  • Andreae, M.O. (1986) Organoarsenic compounds in the environment, in Organometallic Compounds in the Environment, (ed. P.T. Craigh), Longman Group, pp. 199–228.

    Google Scholar 

  • ATSDR (1988) The Nature and Extent of Lead Poisoning in Children in the United States: a Report to Congress, Agency for Toxic Substances and Disease Registry, Public Health Service, Department of Health and Human Services, Atlanta, Ga.

    Google Scholar 

  • ATSDR (1989) Toxicological Profile for Mercury, Agency for Toxic Substances and Disease Registry, Public Health Service, Department of Health and Human Services, Atlanta, Ga.

    Google Scholar 

  • ATSDR (1990) Toxicological Profile for Lead, Agency for Toxic Substances and Disease Registry, Public Health Service, Department of Health and Human Services, Atlanta, Ga.

    Google Scholar 

  • ATSDR (1992) Toxicological Profile for Arsenic, Agency for Toxic Substances and Disease Registry, Public Health Service, Department of Health and Human Services, Atlanta, Ga.

    Google Scholar 

  • ATSDR (1993) Toxicological Profile for Cadmium, Agency for Toxic Substances and Disease Registry, Public Health Service, Department of Health and Human Services, Atlanta, Ga.

    Google Scholar 

  • Bakir, F., Damluji, S.F., Amin-Zaki, L. et al. (1973) Methylmercury poisoning in Iraq. Science 181, 230–241.

    CAS  Google Scholar 

  • Baranowska, I. (1995) Lead and cadmium in human placentas and maternal and neonatal blood (in a heavily polluted area) measured by graphite furnace atomic absorption spectrometry. Occup. Environ. Med. 52, 229–232.

    CAS  Google Scholar 

  • Barltrop, D. (1969) Transfer to lead to the human fetus, in Mineral Metabolism in Pediatrics, (eds D. Barltrop and W.L. Burland), Davis Co, Philadelphia, Pa, pp. 135–151.

    Google Scholar 

  • Barry, P.S.I. (1975) A comparison of concentration of lead in human tissue. Br. J. Ind. Med. 32, 119–139.

    CAS  Google Scholar 

  • Barry, P.S.I. (1981) Concentrations of lead in the tissue of children. Br. J. Ind. Med. 38, 61–71.

    CAS  Google Scholar 

  • Bellinger, D.C., Levitron, A., Waternaux, C. et al. (1987) Longitudinal analyses of prenatal and postnatal lead exposure and early cognitive development. New Engl. J. Med. 316, 1037–1043.

    CAS  Google Scholar 

  • Belton, J.C., Benson, N.C., Hanna, M.L. and Taylor, R.T. (1985) Growth inhibitory and cytotoxic effects of three arsenic compounds on cultured Chinese hamster ovary cells. J. Environ. Sci. Health 20A, 37–72.

    Google Scholar 

  • Berlin, M. and Gibson, S. (1963) Renal uptake, excretion and retention of mercury: Part I. A study in the rabbit during infusion of mercuric chloride. Arch. Environ. Health 6, 56–63.

    Google Scholar 

  • Bettley, F.R. and O’Shea, J. A. (1975) The absorption of arsenic and its relation to carcinoma. Br. J. Dermatol. 92, 563–568.

    CAS  Google Scholar 

  • Braman, R.S. and Foreback, C.C. (1973) Methylated forms of arsenic in the environment. Science 182, 1247–1249.

    CAS  Google Scholar 

  • Bruenger, F.W., Stevens, W. and Stover, B.J. (1973) The association of 210Pb with constituents of erythrocytes. Health Phys. 25, 37–42.

    CAS  Google Scholar 

  • Buchet, J.P., Lauwerys, R. and Roels, H. (1981a) Comparison of the urinary excretion of arsenic metabolites after a single oral dose of sodium arsenite, monomethyl arsonate or dimethyl arsinate in man. Int. Arch. Occup. Environ. Health 48, 71–79.

    CAS  Google Scholar 

  • Buchet, J.P., Lauwerys, R. and Roels, H. (1981b) Urinary excretion of inorganic arsenic and its metabolites after repeated ingestion of sodium meta arsenite by volunteers. Int. Arch. Occup. Environ. Health 48, 111–118.

    CAS  Google Scholar 

  • Canada-Ontario Steering Committee (1983) Mercury Pollution in the Wabifon—English River System of Northwestern Ontario, and Possible Remedial Measures, summary of a technical report, Canada-Ontario Steering Committee, Provincial Ministry of the Environment, Toronot.

    Google Scholar 

  • Cannon, J.R., Saunders, J.B. and Toia, R.F. (1983) Isolation and preliminary toxicological evaluation of arsenobetaine, the water-soluble arsenical constituent from the hepatopancreas of the western rock lobster. Sci. Total Environ. 31, 181–185.

    CAS  Google Scholar 

  • Cember, H., Gallagher, P. and Faulkner, A. (1968) Distribution of mercury among blood fractions and serum proteins. Am. Ind. Hyg. Assoc. J. 29, 233–237.

    CAS  Google Scholar 

  • Chamberlain, A., Heard, C, Little, M.J. et al. (1978) Investigations into Lead from Motor Vehicles, Report No. AERE-9198, United Kingdom Atomic Energy Authority, Harwell (cited in EPA 1986a).

    Google Scholar 

  • Chan, H.M., Satoh, M., Zalups, R.K. and Cherian, M.G. (1992) Exogenous metallothionein and renal toxicity of cadmium and mercury in rats. Toxicology 76, 15–26.

    CAS  Google Scholar 

  • Chan, H.M., Zhu, L.F., Zhong, R. et al. (1993) Nephrotoxicity in rats following liver transplantation from cadmium-exposed rats, Toxicol. Appl. Pharmacol. 123, 89–96.

    CAS  Google Scholar 

  • Charbonneau, S.M., Spencer, K., Bryce, F. et al. (1978) Arsenic excretion by monkeys dosed with arsenic-containing fish or with inorganic arsenic. Bull. Environ. Contam. Toxicol. 20, 470–477.

    CAS  Google Scholar 

  • Cherian, M.G. (1980) The synthesis of metallothionein and cellular adaptation to metal toxicity in primary rat kidney epithelial cell cultures. Toxicology 17, 225–231.

    CAS  Google Scholar 

  • Cherian, M.G. and Chan, H.M. (1993) Biological functions of metallothionein — a review, in Metallothionein III: Biological Roles and Medical Implications, (eds K.T. Suzuki, N. Imura and M. Kimura).

    Google Scholar 

  • Cherian, M.G. and Goyer, R.A. (1989) Cadmium toxicity. Comments Toxicol. 3, 191–206.

    CAS  Google Scholar 

  • Cherian, M.G., Hursh, J.G., Clarkson, T.W. et al. (1978) Radioactive mercury distribution in biological fluids and excretion in human subjects after inhalation of mercury vapor. Arch. Environ. Health 33, 190–114.

    Google Scholar 

  • Chung, J., Nartey, N.O. and Cherian, M.G. (1986) Metallothionein levels in liver and kidney of Canadians — a potential indicator of environmental exposure to cadmium. Arch. Environ. Health 41, 319–323.

    CAS  Google Scholar 

  • Clarkson, T.W., Gatzy, J. and Dalton, C. (1961) Studies on the Equilibration of Mercury Vapor with Blood, University of Rochester Atomic Energy Project, Division of Radiation Chemistry and Toxicology, Rochester, New York.

    Google Scholar 

  • Crecelius, E.A. (1977) Changes in the chemical speciation of arsenic following ingestion by man. Environ. Health Perspect. 19, 147–150.

    CAS  Google Scholar 

  • Cullen, W.R. and Reimer, K.J. (1989) Arsenic speciation in the environment. Chem. Rev. 89, 713–764.

    CAS  Google Scholar 

  • Dencker, L., Danielsson, B., Khayat, A. et al. (1983) Deposition of metals in the embryo and fetus, in Reproductive and Developmental Toxicity of Metals, (eds T.W. Clarkson, G.G. Nordberg and P.R. Sager), Plenum Press, New York, pp. 607–631.

    Google Scholar 

  • Drasch, G.A., Böhm, J. and Baur, C. (1987) Lead in human bones. Investigation of an occupationally non-exposed population in southern Bavaria (F.R.G.). 1. Adults. Sci. Total Environ. 647, 303–315.

    Google Scholar 

  • Dudley, R.E., Gammal, L.M. and Klaassen, C.D. (1985) Cadmium-induced hepatic and renal injury in chronically exposed rats: likely role of hepatic cadmium-metallothionein in nephrotoxicity. Toxicol. Appl. Pharmacol. 77, 414–426.

    CAS  Google Scholar 

  • Egle, P.M. and Shelton, K.R. (1986) Chronic lead intoxication causes a brain-specific nuclear protein to accumulate in the nuclei of cells lining kidney tubule. J. Biol. Chem. 261, 2294–2298.

    CAS  Google Scholar 

  • Eisler, R. (1994) A review of arsenic hazards to plants and animals with emphasis on fishery and wildlife resources, in Arsenic in the Environment, Part II: Human Health and Ecosystem Effects, (ed. J.O. Nriagaru), John Wiley and Sons Inc., pp. 185–259.

    Google Scholar 

  • Ellis, K.J., Vartsky, D., Zanzi, I. et al. (1979) Cadmium: in vivo measurement in smokers and nonsmokers. Science 205, 323–325.

    CAS  Google Scholar 

  • EPA (1986) Air Quality Criteria for Lead. June 1986 and Addendum, September 1986, EPA 600/8–83–018F, Office of Research and Development, Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Environmental Protection Agency, Research Triangle Park, N.C.

    Google Scholar 

  • EPA (1987) Special Report on Ingested Inorganic Arsenic: Skin Cancer and Nutritional Essentiality. Risk Assessment Form, Environmental Protection Agency, Washington, DC.

    Google Scholar 

  • EPA (1989) Evaluation of the Potential Carcinogenicity of Lead and Lead Compounds, EPA-600/8–89/045A, Environmental Protection Agency.

    Google Scholar 

  • Everson, J. and Patterson, C.C. (1980) ‘Ultra-clean’ isotope dilution/mass spectrometric analyses for lead in human blood plasma indicate that most reported values are artificially high. Clin. Chem. 26, 1603–1607.

    CAS  Google Scholar 

  • Flanagan, P.R., McLellan, J., Haist, J. et al. (1978) Increased dietary cadmium absorption in mice and human subjects with iron deficiency. Gastroenterology 74, 841–846.

    CAS  Google Scholar 

  • Foulkes, E.C. (1978) Renal tubular transport of cadmium-metallothionein. Toxicol. Appl. Pharmacol. 45, 505–512.

    CAS  Google Scholar 

  • Foulkes, E.C. (1993) Metallothionein and glutathione as determinants of cellular retention and extrusion of cadmium and mercury. Life Sciences 52(20), 1617–1620.

    CAS  Google Scholar 

  • Friberg, L., Kullman, L., Lind, B. and Nylander, M. (1986) Mercury in the central nervous system in relation to amalgam fillings. Lakartidningen 83, 519–522.

    CAS  Google Scholar 

  • Friberg, L. and Nordberg, F. (1973) Inorganic mercury — a toxicological and epidemiological appraisal, in Mercury, Mercurials and Mercaptans, (eds M.W. Miller and T.W. Clarkson), Charles C. Thomas, Springfield, Illinois, pp. 5–22.

    Google Scholar 

  • Goering, P.K. and Klaassen, C.D. (1984) Zinc-induced tolerance to cadmium hepato-toxicity. Toxicol. Appl. Pharmacol. 74, 299–307.

    CAS  Google Scholar 

  • Goyer, R.A. (1971) Lead toxicity: a problem in environmental pathology. Am. J. Pathol. 64, 167–182.

    CAS  Google Scholar 

  • Goyer, R.A. (1996) Toxic effects of metals, in Casarett and Doull’s Toxicology, 5th edn, (ed. CD. Klaassen), McGraw-Hill, New York, pp. 691–736.

    Google Scholar 

  • Goyer, R.A. and Wilson, M.H. (1975) Lead-induced inclusion bodies: results of EDTA treatment. Lab. Inest. 32, 149–156.

    CAS  Google Scholar 

  • Goyer, R.A., Leonard, D.L., Moore, J.F. et al. (1970) Lead dosage and the role of the intranuclear inclusion body. An experimental Study. Arch. Environ. Health 20, 705–711.

    CAS  Google Scholar 

  • Goyer, R.A., Miller, C.R., Zhu, S.Y. et al. (1989) Non-metallothionein-bound cadmium in the pathogenesis of cadmium nephrotoxicity in the rat. Toxicol. Appl. Pharmacol. 101, 232–244.

    CAS  Google Scholar 

  • Griffin, T.B., Coulston, F. and Wills, H. (1975) Biological and clinical effects of continuous exposure to airborne particulate lead. Arh. Hig. Toksikol. (Yugoslavia) 26, 191–208.

    Google Scholar 

  • Hammer, D.I., Calocci, A.V., Hasselblad, V. et al. (1973) Cadmium and lead in autopsy tissues. J. Occup. Med. 15, 956–964.

    CAS  Google Scholar 

  • Hammond, P.B. (1982) Metabolism of lead, in Lead Absorption in Children: Management, Clinical and Environmental Aspects, (eds J.J. Chisolm and D.M. O’Hara), Urban and Schwarzenberg, Baltimore, Md, pp. 11–20.

    Google Scholar 

  • Hansen, J.C., Wulf, H.C., Kromann, N. et al. (1985) Cadmium concentrations in blood samples from an East Greenlandic population. Dan. Med. Bull. 32, 277–279.

    CAS  Google Scholar 

  • Horiuchi, K., Horiguchi, S. and Suekane, M. (1959) Studies on industrial lead poisoning. 1: Absorption, transportation, deposition and excretion of lead. 6: The lead contents in organ-tissues of the normal Japanese. Osaka City Med. J. 5, 41–70.

    CAS  Google Scholar 

  • Hursh, J.B., Clarkson, T.W., Cherian, M.G. et al. (1976) Clearance of mercury (Hg-197, Hg-203) vapor inhaled by human subjects. Arch. Environ. Health 31, 302–309.

    CAS  Google Scholar 

  • IARC (1987) Monograph on the Evaluation of Carcinogenicity: an Update of IARC Monographs, Vol. 1–42, Suppl. 7,

    Google Scholar 

  • IARC (1994) Monograph on the Evaluation of Risks to Humans. Cadmium, Mercury, Beryllium and the Glass Industry, Vol. 58, International Agency for Research on Cancer, World Health Organization, Lyons.

    Google Scholar 

  • Indraprasit, S., Alexander, G.V. and Gonick, H.C. (1974) Tissue composition of major and trace elements in uremia and hypertension. J. Chronic Dis. 27, 135–161.

    CAS  Google Scholar 

  • Joselow, M.M., Ruiz, R. and Goldwater, L. (1968) Absorption and excretion of mercury in man. XIV. Salivary excretion of mercury and its relationship to blood and urine. Arch. Environ. Health. 17, 35–38.

    CAS  Google Scholar 

  • Kagey, B.T., Bumgarner, J.E. and Creason, J.P. (1977) Arsenic levels in maternal-fetal tissue sets, in Trace Substances in Environmental Health XI, (ed. O.D. Hemphill), University of Missouri Press, Columbia, pp. 252–256.

    Google Scholar 

  • Kaise, T., Watanabe, S. and Itoh, K. (1985) The acute toxicity of arsenobetaine. Chemosphere 14, 1327–1332.

    CAS  Google Scholar 

  • Kjellstrom, T. and Nordberg, G.F. (1978) A kinetic model of cadmium metabolism in the human being. Environ. Res. 16, 248–269.

    CAS  Google Scholar 

  • Kjellstrom, T. and Nordberg, G.F. (1985) Kinetic model of cadmium metabolism, in Cadmium and Health: a Toxicological and Epidemiological Appraisal. Vol.I. Exposure, Dose, and Metabolism, (eds L. Friberg, CG. Elinder, T. Kjellstrom and G.F. Nordberg), CRC Press, Boca Raton, FL, pp. 179–197.

    Google Scholar 

  • Kjellstrom, T., Borg, K. and Lind, B. (1978) Cadmium in feces as an estimator of daily cadmium intake in Sweden. Environ. Res. 15, 242–251.

    CAS  Google Scholar 

  • Kreppel, H., Bauman, J.W., Liu, J. et al. (1993) Induction of metallothionein by arsenicals in mice. Fund. Appl. Toxicol. 20, 184–189.

    CAS  Google Scholar 

  • Krishnan, S.S., Lui, S.M.W., Jervis, R.E. and Harrison, J.E. (1990) Studies of cadmium uptake in bone and its environmental distribution. Biol. Ttrace Elem. Res. 26–27,257–261.

    Google Scholar 

  • Kuhnert, P.M., Kuhnert, B.R., Bottoms, S.F. et al. (1982) Cadmium levels in maternal blood, fetal cord blood, and placental tissues of pregnant women who smoke. Am. J. Obstet. Gynecol. 142, 1021–1025.

    CAS  Google Scholar 

  • Lakso, J.U. and Peoples, S.A. (1975) Methylation of inorganic arsenic by mammals. J. Agric. Food Chem. 23, 674–676.

    CAS  Google Scholar 

  • Lauwerys, R., Buchet, J.P., Roels, H. et al. (1978) Placental transfer of lead, mercury, cadmium, and carbon monoxide in women. I. Comparison of the frequency distributions of the biological indices in maternal and umbilical cord blood. Environ. Res. 15, 278–289.

    CAS  Google Scholar 

  • Lauwerys, R., Hardey, R., Job, M. et al. (1984) Environmental pollution by cadmium and cadmium body burden: an autopsy study. Toxicol. Lett. 23, 287–289.

    CAS  Google Scholar 

  • Lawrence, J.J., Michalik, P., Tarn, G. and Conacher, H.B.C. (1986) Identification of arsenobetaine and arsenocholine in Canadian fish and shellfish by high-performance liquid chromatography with atomic absorption detection and confirmation by fast atom bombardment mass spectrometry. J. Agric. Food Chem. 34, 315–319.

    CAS  Google Scholar 

  • Liebscher, K. and Smith, H. (1968) Essential and nonessential trace elements: a method of determining whether an element is essential or nonessential in human tissue. Arch. Environ. Health 17, 881–890.

    CAS  Google Scholar 

  • Lovejoy, H.B., Bell, Z.G. and Vizena, T.R. (1974) Mercury exposure evaluations and their correlation with urine mercury excretion. J. Occup. Med. 15, 590.

    Google Scholar 

  • Luten, J.B., Riekwel-Booy, G. and Rauchbaar, A. (1982) Occurrence of arsenic in plaice (Pleuronectes platessa), nature of organoarsenic compound present and its excretion by man. Environ. Health Perspect. 45, 165–170.

    CAS  Google Scholar 

  • Magos, L., Bakir, F., Clarkson, T.W. et al. (1976) Tissue levels of mercury in autopsy specimens of liver and kidney. Bull. WHO 53, 93–96.

    Google Scholar 

  • Maher, W.A. and Butler, E. (1988) Arsenic in the marine environment. Appl. Organomet Chem. 2, 191–214.

    CAS  Google Scholar 

  • Maines, M.D. (1994) Modulating factors that determine interindividual differences in response to metals, in Risk Assessment of Essential Elements, (eds W. Mertz et al.), ILSI Press, Washington, DC.

    Google Scholar 

  • Manton, W.I. (1985) Total contribution of airborne lead to blood lead. Br. J. Ind. Med. 42, 168–172.

    CAS  Google Scholar 

  • Manton, W.I. and Cook, J.D. (1984) High-accuracy (stable isotope dilution) measurements of lead in serum and cerebrospinal fluid. Br. J. Ind. Med. 41, 313–319.

    CAS  Google Scholar 

  • Mappes, R. (1977) [Experiments on excretion of arsenic in urine.] Int. Arch. Occup. Environ. Health 40, 267–272 (in German).

    CAS  Google Scholar 

  • Marafante, E. and Vahter, M. (1984) The effect of methyltransf erase inhibition on the metabolism of [74As] arsenite in mice and rabbits. Chem. Biol. Interact. 50, 49–57.

    CAS  Google Scholar 

  • Marafante, E. and Vahter, M. (1986) The effect of dietary and chemically induced methylation deficiency on the metabolism of arsenate in the rabbit. Acta Pharmacol. Toxicol. 59 (Suppl. 7), 35–38.

    CAS  Google Scholar 

  • Marafante, E., Vahter, M. and Envall, J. (1985) The role of the methylation in the detoxication of arsenate in the rabbit. Chem. Biol Interact. 56, 225–238.

    CAS  Google Scholar 

  • Marafante, E., Vahter, M., Norin, H. et al. (1987) Biotransformation of dimethylarsinic acid in mouse, hamster and man. J. Appl. Toxicol. 7, 111–117.

    CAS  Google Scholar 

  • Marcus, W.L. and Rispin, A.S. (1988) Threshold carcinogenicity using arsenic as an example, in Risk Assessment and Risk Management of Industrial and Environmental Chemicals, Vol XV, (eds CR. Cothern, M.A. Mehlman and W.L. Marcus), Princeton Scientific Publishing Co., Princeton, NJ, pp. 133–158.

    Google Scholar 

  • McKenzie-Parnell, J.M., Kjellstrom, T.E., Sharma, R.P. et al. (1988) Unusually high intake and fecal output of cadmium and fecal output of other trace elements in New Zealand adults consuming dredge oysters. Environ. Res. 46, 1–14.

    CAS  Google Scholar 

  • McLaughlin, J.R., Goyer, R.A. and Cherian, M.G. (1980) Formation of lead-induced inclusion bodies in primary rat kidney epithelial cell cultures: effect of actinomycin D and cycloheximide. Toxicol. Appl. Pharmacol. 56, 418–431.

    Google Scholar 

  • McLellan, J.S., Flanagan, P.R., Chamberlain, M.J. et al. (1978) Measurement of dietary cadmium absorption in humans. J. Toxicol. Environ. Health 4, 131–138.

    CAS  Google Scholar 

  • Miettinen, J.K. (1973) Absorption and elimination of dietary (Hg++) and methylmer-cury in man, in Mercury, Mercurials, and Mercaptans, (eds M.W. Miller and T.W. Clarkson), Charles C. Thomas, Springfield, IL, pp. 233–243.

    Google Scholar 

  • Morgan, H. and Sherlock, J.C. (1984) Cadmium intake and cadmium in the human kidney. Food Addit. Contam. 1, 45–51.

    CAS  Google Scholar 

  • Naganuma, A., Tanaka, T., Urano, and Imura, N. (1991) Role of glutathione in mercury disposition, in Advances in Mercury Toxicology, (eds T. Suzuki, N. Imura and T.W. Clarkson), Plenum Press, New York, p. 111–120.

    Google Scholar 

  • Nakamura, I., Hosokawa, K., Tamra, H. et al. (1977) Reduced mercury excretion with feces in germfree mice after oral administration of methylmercury chloride. Bull. Environ. Contam. Toxicol 17, 5.

    Google Scholar 

  • Needleman, H.L. and Shapiro, I.M. (1974) Dentine lead levels in asymptomatic Philadelphia school children: subclinical exposure in high and low risk groups. Environ. Health Perspect. 7, 27–31.

    CAS  Google Scholar 

  • Newton, D., Johnson, P., Lally, A.E. et al. (1984) The uptake by man of cadmium ingested in crab meat. Hum. Toxicol. 3, 23–28.

    CAS  Google Scholar 

  • Nielsen, F.H. and Uthus, E.O. (1984) Arsenic, in Biochemistry of the Essential Ultratrace Elements, (ed. E. Frieden), Plenum Press, New York, pp. 319–40.

    Google Scholar 

  • Nomiyama, K. and Nomiyama, H. (1986) Critical concentrations of ‘unbound’ cadmium in the rabbit renal cortex. Exerientia 42, 149.

    CAS  Google Scholar 

  • Nordberg, G.F., Goyer, R. and Nordberg, M. (1975) Comparative toxicity of cadmium-metallothionein and cadmium chloride on mose kidney. Arch. Pathol. 99, 192–197.

    CAS  Google Scholar 

  • Nordberg, G. (1976) Effects and Dose-response of Toxic Metals, Elsevier/North Holland Biomedical Press, New York.

    Google Scholar 

  • Nordberg, G., Kjellstrom, T. and Nordberg, M. (1985) Kinetics and metabolism, in Cadmium and health: a Toxicological and Epidemiological Appraisal. Vol. I. Exposure, Dose, and Metabolism, (eds L. Friberg, C.G. Elinder, T. Kjellstrom et al.), CRC Press, Boca Raton, FL, pp. 103–178.

    Google Scholar 

  • Norseth, T. and Clarkson, T.W. (1970) Studies on the biotransformation of Hg-203-labelled methylmercury chloride. Arch. Environ. Health 21, 717–727.

    CAS  Google Scholar 

  • Norseth, T. and Clarkson, T.W. (1971) Intestinal transport of Hg-203-labeled methyl mercury chloride. Role of biotransformations in rats. Arch. Environ. Health 22, 668–577.

    Google Scholar 

  • Nylander, N., Friberg, L. and Lind, B. (1987) Mercury concentrations in the human brain and kidneys in relation to exposure from dental amalgams. Swed. Dent. J. 11, 179–187.

    CAS  Google Scholar 

  • O’Flaherty, E.J., Hammond, P.B. and Lerner, S.I. (1982) Dependence of apparent blood lead half-life on the length of previous lead exposure in humans. Fund. Appl. Toxicol. 2, 49–54.

    Google Scholar 

  • Ohsawa, M. and Magos, L. (1974) The chemical form of methylmercury complex in rat bile. Biochem. Pharmacol. 23, 1903–1906.

    CAS  Google Scholar 

  • Ong, C.N. and Lee, W.R. (1980) High affinity of lead for fetal hemoglobin. Br. J. Ind. Med. 37, 292–298.

    CAS  Google Scholar 

  • Paglia, D.E., Valentine, W.N. and Dahlgner, J.G. (1975) Effects of low level lead exposure on pyrimidine-5’-nucleotidase and other erythrocyte enzymes. J. Clin. Invest. 56, 1164–1169.

    CAS  Google Scholar 

  • Phelps, R.W., Clarkson, T.W., Kershaw, T.G. et al. (1980) Interrelationships of blood and hair mercury concentrations in a North American population exposed to methylmercury. Arch. Environ. Health 35, 161–168.

    CAS  Google Scholar 

  • Rabinowitz, M.B., Wetherill, G.W. and Kopple, J.D. (1976) Kinetic analysis of lead metabolism in healthy humans. J. Clin. Invest. 58, 260–270.

    CAS  Google Scholar 

  • Rabinowitz, M.B., Wetherill, G.W. and Kopple, J.D. (1977) Magnitude of lead intake from respiration by normal man. J. Lab. Clin. Med. 90, 238–248.

    CAS  Google Scholar 

  • Radisch, B., Luck, W. and Nau, H. (1987) Cadmium concentrations in milk and blood of smoking mothers. Toxicol. Lett. 36, 147–152.

    CAS  Google Scholar 

  • Rahola, T., Aaran, R-K. and Miettenen, J.K. (1973) Retention and elimination of 115mCd in man, in Health Physics Problems of Internal Contaminations, Akademia, Budapest, pp. 213–218.

    Google Scholar 

  • Refsvik, T. and Norseth, T. (1975) Methylmercuric compounds in rat bile. Acta Pharmacol. Toxicol. 36, 67–68.

    CAS  Google Scholar 

  • Roels, H.A., Hubermont, G., Buchet, J.P. et al. (1978) Placental transfer of lead, mercury, cadmium, and carbon monoxide in women. III. Factors influencing the accumulation of heavy metals in the placenta, and the relationship between maternal concentration in the placenta and in maternal and cord blood. Environ. Res. 16, 236–247.

    CAS  Google Scholar 

  • Rosen, J.F. (1985) Metabolic and cellular effects of lead: a guide to low-level lead toxicity in children, in Dietary and Environmental Lead: Human Health Effects, (ed. K.R. Mahaffey), Elsevier Science Publishers, pp. 157–185.

    Google Scholar 

  • Rothstein, A. and Hayes, A.L. (1964) The turnover of mercury in rats exposed repeatedly to inhalation of vapor. Health Phys. 10, 1099–1113.

    CAS  Google Scholar 

  • Rowland, I., Davies, M. and Evans, J. (1980) Tissue content of mercury in rats given methylmercury chloride orally: influence of intestinal flora. Arch. Environ. Health. 35, 155.

    CAS  Google Scholar 

  • Sendelbach, L.E. and Klaassen, CD. (1988) Kidney synthesizes less metallothionein than liver in response to cadmium chloride and cadmium-metallothionein. Toxicol. Appl Pharmacol. 92, 95–102.

    CAS  Google Scholar 

  • Silbergeld, E.K. (1992) Mechanisms of lead neurotoxicity, or looking beyond the lamppost. FASEBJ. 6, 3201–3206.

    CAS  Google Scholar 

  • Squibb, K.S., Pritchard, J.B. and Fowler, B.A. (1984) Cadmium-metallothionein nephropathy: relationships between ultrastrutural/biochemical alterations and intracellular cadmium binding. J. Pharamcol. Exp. Therap. 229, 311–321.

    CAS  Google Scholar 

  • Steenhout, A. and Pourtois, M. (1981) Lead accumulation in teeth as a function of age with different exposures. Br. J. Ind. Med. 38, 297–303.

    CAS  Google Scholar 

  • Succop, P.A., O’Flaherty, E.J., Bornschein, R.L. et al (1987) A kinetic model for estimating changes in the concentration of lead in the of young children, in International Conference: Heavy Metals in the Environment, Vol. 2, September, (eds S.E. Lindberg and T.C. Hutchinson), CEP Consultants, New Orleans, LA.

    Google Scholar 

  • Suda, I. and Takahashi, H. (1986) Enhanced and inhibited bio-transformation of methylmercury in the rat spleen. Toxicol. Appl. Pharmacol. 82, 45–52.

    CAS  Google Scholar 

  • Sumino, K., Hayakawa, K. and Shibata, T. et al (1975) Heavy metals in normal Japanese tissues. Arch. Environ. Health 30, 487–494.

    CAS  Google Scholar 

  • Suzuki, C.A.M. and Cherian, M.G. (1987) Renal toxicity of cadmium-metallothionein and enzymuria in rats. J. Pharmacol. Exp. Ther. 240, 314–319.

    CAS  Google Scholar 

  • Suzuki, T., Imura, N. and Clarkson, T.W. (1991) Overview, in Advances in Mercury Toxicology, (eds T. Suzuki, N. Imura and T.W. Clarkson), Plenum Press, New York, pp. 1–32.

    Google Scholar 

  • Takahashi, K., Yamauchi, H., Yamato, N. et al (1988) Methylation of arsenic trioxide in hamsters with liver damage induced by long-term administration of carbon tetrachloride. Appl. Organomet. Chem. 2, 309–314.

    Google Scholar 

  • Takahata, N., Hayashi, H., Watanabe, B. et al (1970) Accumulation of mercury in the brains of two autopsy cases with chronic inorganic mercury poisoning. Folia Psychiatr. Neurol. Jpn 24, 59–69.

    CAS  Google Scholar 

  • Tarn, G.K., Charbonneau, S.M., Bruce, F. et al (1979) Metabolism of inorganic arsenic (74As) in humans following oral ingestion. Toxicol. Appl Pharmacol. 50, 319–322.

    Google Scholar 

  • Truska, P., Rosival, L., Balazova, G. et al (1989) Blood and placental concentrations of cadmium, lead, and mercury in mothers and their newborns. J. Hyg. Epidemiol. Microbiol. Immunol. 33, 141–147.

    CAS  Google Scholar 

  • Turner, M.D., Küpper, R.W., Smith, J.C. et al (1975) Studies on volunteers consuming methylmercury in tuna fish. Clin. Res. 23, 2.

    Google Scholar 

  • Vahter, M. and Marafante, E. (1987) Effects of low dietary intake of methionine, choline or proteins on the biotransformation of arsenite in the rabbit. Toxicol. Lett. 37, 41–46.

    CAS  Google Scholar 

  • Vahter, M., Berglund, M., Nermell, B. and Akesson, A. (1996) Bioavailability of cadmium from shellfish and mixed diet in women. Toxicol. Appl. Pharmacol. 136(2), 332–341.

    CAS  Google Scholar 

  • Weiss, S.H., Wands, J.R. and Yardley, J.H. (1973) Demonstration by electron defrac-tion of mercuric sulfide (b-HgS) in a case of ‘melanosis coli and black kidneys’ caused by chronic inorganic mercury poisoning. Lab. Invest, 401–402 (abstract).

    Google Scholar 

  • Whelton, B.D., Bhattacharyya, M.H., Peterson, D.P. et al (1994) Skeletal changes in multiparous and uniparous mice fed a nutrient-deficient diet containing cadmium. Toxicology 91, 235–251.

    CAS  Google Scholar 

  • WHO (1976) Environmental Health Criteria 1: Mercury, World Health Organization, Geneva, 132 pp.

    Google Scholar 

  • WHO (1977) Environmental Health Aspects of Cadmium, WHO Task Group, Geneva.

    Google Scholar 

  • WHO (1981) Environmental Health Criteria 18: Arsenic, World Health Organization, Geneva.

    Google Scholar 

  • WHO (1989) Environmental Health Criteria 85: Lead — Environmental Aspects, World Health Organization, Geneva.

    Google Scholar 

  • WHO (1990) Environmental Health Criteria 101: Methylmercury, World Health Organization, Geneva.

    Google Scholar 

  • WHO (1992) Environmental Health Criteria 134: Cadmium, World Health Organization, Geneva.

    Google Scholar 

  • Yamauchi, H. and Yamamura, Y. (1984) Metabolism and excretion of orally ingested trimethylarsenic in man. Bull. Environ. Contam. Toxicol. 32, 682–687.

    CAS  Google Scholar 

  • Yamauchi, H. and Yamamura, Y. (1985) Metabolism and excretion of orally administered arsenic trioxide in the hamster. Toxicology 34, 113–121.

    CAS  Google Scholar 

  • Yamauchi, H., Takahashi, K. and Yamamura, Y. (1986) Metabolism and excretion of orally and intraperitoneally administered gallium arsenide in the hamster. Toxicology 40, 237–246.

    CAS  Google Scholar 

  • Zalups, R.K. and Cherian, M.G. (1992) Renal metallothionein metabolism after a reduction of renal mass. II. Effect of zinc pretreatment on the renal toxicity and intrarenal accumulation of inorganic mercury. Toxicology 71, 103–117.

    CAS  Google Scholar 

  • Zalups, R.K. and Lash, L.H. (1994) Advances in understanding the renal transport and toxicity of mercury. J. Toxicol. Environ. Health 42, 1–4.

    CAS  Google Scholar 

  • Zaric, M., Prpic-Majic, D., Kostial, K. and Piasek, M. (1987) Exposure to lead and reproduction, in Summary Proceedings of a Workshop: Selected Aspects of Exposure to Heavy Metals in the Environment. Monitors, Indicators, and High Risk Groups, April, 1985, National Academy of Sciences, Washington, DC; Council of Academies of Sciences and Arts, Yugoslavia; pp. 119–126 (cited in ATSDR, 1988).

    Google Scholar 

  • Zheng, H., Liu, J., Choo, K.H. et al. (1996) Metallothionein-I and -II knock-out mice are sensitive to cadmium-induced liver mRNA expression of c-jun and p53. Toxicol. Appl. Pharmacol. 136, 229–235.

    CAS  Google Scholar 

  • Ziegler, E.E., Edwards, B.B., Jensen, R.L. et al. (1978) Absorption and retention of lead by infants. Pediatr. Res. 12, 29–34.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Chan, H.M. (1998). Metal accumulation and detoxification in humans. In: Langston, W.J., Bebianno, M.J. (eds) Metal Metabolism in Aquatic Environments. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-2761-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2761-6_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-4731-4

  • Online ISBN: 978-1-4757-2761-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics