Skip to main content

Abstract

The extension of item response theory to data from more than one group of persons offers a unified approach to such problems as differential item functioning, item parameter drift, nonequivalent groups equating, vertical equating, two-stage testing, and matrix-sampled educational assessment. The common element in these problems is the existence of persons from different populations responding to the same test or to tests containing common items. In differential item functioning, the populations typically correspond to sex or demographic groups; in item parameter drift, to annual cohorts of students; in vertical equating, to children grouped by age or grade; in nonequivalent groups equating, to normative samples from different places or times; in two-stage testing, to examinees classified by levels of performance on a pretest; and in matrix-sampled educational assessment, to students from different schools or programs administered matrix-sampled assessment instruments. In all these settings, the objective of the multiplegroup analysis is to estimate jointly the item parameters and the latent distribution of a common attribute or ability of the persons in each of the populations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andersen, E.B. and Madsen, M. (1977). Estimating the parameters of a latent population distribution. Psychometrika 42, 357–374.

    Article  MathSciNet  MATH  Google Scholar 

  • Bock, R.D. ( 1985 reprint). Multivariate Statistical Methods in Behavioral Research. Chicago: Scientific Software International.

    Google Scholar 

  • Bock, R.D. (1989). Measurement of human variation: A two-stage model. In R.D. Bock (ed.), Multilevel Analysis of Educational Data (pp. 319–342 ). New York: Academic Press.

    Google Scholar 

  • Bock, R.D. and Aitkin, M. (1981). Marginal maximum likelihood estimation of item parameters: Application of an EM algorithm. Psychometrika 46, 443–445.

    Article  MathSciNet  Google Scholar 

  • Bock, R.D. and Kolakowski, D. (1973). Further evidence of sex-linked major-gene influence on human spatial visualizing ability. American Journal of Human Genetics 25, 1–14.

    Google Scholar 

  • Bock, R.D. and Lieberman, M. (1970). Fitting a response model for n dichotomously scored items. Psychometrika 35, 179–197.

    Article  Google Scholar 

  • Bock, R.D. and Mislevy, R.J. (1981). An item response model for matrix-sampling data: The California grade-three assessment. New Directions for Testing and Measurement 10, 65–90.

    Google Scholar 

  • Bock, R.D. and Zimowski, M. (1989). Duplex Design: Giving Students A Stake in Educational Assessment. Chicago: Methodology Research Center, NORC.

    Google Scholar 

  • Day, N.E. (1969). Estimating the components of a mixture of normal distributions. Biometrika 56, 463–473.

    Article  MathSciNet  MATH  Google Scholar 

  • de Leeuw, J. and Verhelst, N. (1986). Maximum likelihood estimation in generalized Rasch models. Journal of Educational Statistics 11, 193–196.

    Google Scholar 

  • Dempster, A.P., Rubin, D.B., and Tsutakawa, R.K. (1981). Estimation in covariance component models. Journal of American Statistical Association 76, 341–353.

    Article  MathSciNet  MATH  Google Scholar 

  • Dorus, E., Cox, N.J., Gibbons, R.D., Shaughnessy, R., Pandey, G.N., and Cloninger, R.C. (1983). Lithium ion transport and affective disorders within families of bipolar patients. Archives of General Psychiatry 401, 945–552.

    Google Scholar 

  • Gasser, T., Müller, H.-G., and Mammitzsch, V. (1985). Kernels for non-parametric curve estimation. Journal of the Royal Statistical Society, Series B 47, 238–252.

    MATH  Google Scholar 

  • Kiefer, J. and Wolfowitz, J. (1956). Consistency of the maximum likelihood estimator in the presence of infinitely many incidental parameters. Annals of Mathematical Statistics 27, 887–906.

    Article  MathSciNet  MATH  Google Scholar 

  • Kolakowski, D. and Bock, R.D. (1982). A multivariate generalization of probit analysis. Biometrics 37, 541–551.

    Article  Google Scholar 

  • Lindsay, B., Clogg, C.C., and Grego, J. (1991). Semiparametric estimation in the Rasch model and related exponential response models, including a simple latent class model for item analysis. Journal of the American Statistical Association 86, 96–107.

    Article  MathSciNet  MATH  Google Scholar 

  • Lord, F.M. and Novick, M.R. (1968). Statistical Theories of Mental Test Scores (with Contributions by A. Birnbaum). Reading, MA: Addison-Wesley.

    Google Scholar 

  • Mislevy, R.J. (1983). Item response models for grouped data. Journal of Educational Statistics 8, 271–288.

    Article  Google Scholar 

  • Mislevy, R.J. (1984). Estimating latent distributions. Psychometrika 49, 359–381.

    Article  MATH  Google Scholar 

  • Mislevy, R.J. and Bock, R.D. (1996). BILOG 3: Item Analysis and Test Scoring with Binary Logistic Models. Chicago: Scientific Software International.

    Google Scholar 

  • Muraki, E. and Bock, R.D. (1991). PARSCALE: Parametric Scaling of Rating Data. Chicago: Scientific Software International.

    Google Scholar 

  • Reiser, M.R. (1983). An item response model for demographic effects. Journal of Educational Statistics 8 (3), 165–186.

    Article  Google Scholar 

  • Sanathanan, L. and Blumenthal, N. (1978). The logistic model and estimation of latent structure. Journal of the American Statistical Association 73, 794–798.

    Article  MATH  Google Scholar 

  • Sirotnik, K. and Wellington, R. (1977). Incidence sampling: An integrated theory for “matrix-sampling ” Journal of Educational Measurement 14, 343–399.

    Article  Google Scholar 

  • Zimowski, M.F., Muraki, E., Mislevy, R.J., and Bock, R.D. (1996). BILOGMG: Multiple-Group IRT Analysis and Test Maintenance for Binary Items. Chicago: IL: Scientific Software International.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bock, R.D., Zimowski, M.F. (1997). Multiple Group IRT. In: van der Linden, W.J., Hambleton, R.K. (eds) Handbook of Modern Item Response Theory. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-2691-6_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2691-6_25

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-2849-8

  • Online ISBN: 978-1-4757-2691-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics