Skip to main content

Lipoxygenase Metabolites and Cancer Metastasis

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 422))

Abstract

Cancer metastasis is a complicated process. For a transformed cell to form a successful metastatic colony, it must in general complete all or most of the well-defined steps that comprise the “metastatic cascade”.1–4 The first step is uncontrolled cell proliferation, characteristic of both benign and malignant tumor cells. Intrinsic or acquired genetic instability, together with various epigenetic factors, generate tumor cell variants that acquire unique phenotypic characteristics that dissociate them from the parent tumor population and thus allow these variants to escape from the “social” constraints imposed by the host. This step confers on these “mutated” tumor cells invasive or metastatic capabilities and is generally considered to be the first step leading to site-specific metastasis. In the next step, tumor cells, in response to various chemoattractants and cytokines derived from the host and/or tumor cells, migrate towards neighboring vasculature or intravasate into the vasculature of the tumor and thus enter the hematogenous or lymphatic circulation. Subsequently, tumor cells travel to and arrest in the microcirculation by specific adherence to the endothelial cells of the target organ. Thereafter, tumor cells induce endothelial cell retraction, exit from circulation (extravasation), interact with the organ-specific extracellular matrix (ECM), proliferate in response to local (“soil”) growth factors, and finally form a metastatic colony. Failure at any one of these steps generally will abort the metastatic process. Completion of every step of the metastatic cascade is subject to a multitude of variable influences, an apparent example being the requirement of angiogenesis for the growth of both primary and secondary tumors.5.6

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Honn, K.V. and Sloane, B.F. Hemostatic Mechanisms and Metastasis. Martinus Nijhoff, Norwell, MA. 1984.

    Google Scholar 

  2. Weiss, L., Orr, F.W. and Honn, K.V. Interactions of cancer cells with the microvasculature during metastasis. FASEB J. 2, 12, 1988.

    CAS  Google Scholar 

  3. Honn, K.V., Powers, W.E., and Sloane, B.F., Mechanisms of Cancer Metastasis: Potential Therapeutic Implications. Martinus Nijhoff, Norwell, MA, 1986.

    Google Scholar 

  4. Filder, I.J. and Hart, I.R., Biological diversity in metastatic neoplasms: origins and implications. Science, 217, 998, 1982.

    Article  Google Scholar 

  5. Folkman, J., Watson, K., Ingber, D., and Hanahan, D., Induction of angiogenesis during the transition from hyperplasia to neoplasia, Nature, 339, 58, 1989.

    Article  CAS  Google Scholar 

  6. Liotta, L.A., Steeg, P.S., and Stetler-Stevenson, W.G., Cancer metastasis and angiogenesis: an imbalance of positive and negative regulation, Cell, 64, 327, 1991.

    Article  CAS  Google Scholar 

  7. Weiss, L., Orr, F.W., and Honn, K.V., Interactions between cancer and the microvasculature: a rate-regulator for metastasis, Clin. Expl. Metastasis, 7, 127, 1989.

    Article  CAS  Google Scholar 

  8. Hart, I.R., Goode, N.T., and Wilson. R.E., Molecular aspects of the metastatic cascade, Biochim. Biophys, Acta., 989, 65, 1989.

    CAS  Google Scholar 

  9. Liotta, L.A., Tumor invasion and metastasis: role of the extracellular matrix, Cancer Res., 46, 1, 1986.

    Article  CAS  Google Scholar 

  10. Pauli, B.U. and Lee, C.L. Organ preference of metastasis: the role of organ-specifically modulated endothelial cells. Lab. Invest., 58, 379, 1988.

    CAS  Google Scholar 

  11. Belloni, P.N. and Tressler, R.J., Microvascular endothelial cell heterogeneity: interactions with leukocytes and tumor cells, Cancer Metastasis Rev., 8, 353, 1990.

    Article  CAS  Google Scholar 

  12. Pauli, B.U., Augustin-Voss, H.G., El-Sabban, M.E., Johnson, R.C., and Hammar, D.A., Organ preference of metastasis: the role of endothelial cell adhesion molecules. Cancer Metastasis Rev., 9, 175, 1990.

    Article  CAS  Google Scholar 

  13. Nicolson, G.L., Organ specificity of tumor metastasis: role of preferential adhesion, invasion, and of malignant cells at specific secondary sites, Cancer Metastasis Rev., 7, 143, 1988.

    Article  CAS  Google Scholar 

  14. Auerbach, R., Pattern of tumor metastasis: organ selectivity in the spread of cancer cells, Lab. Invest., 58, 361, 1988.

    CAS  Google Scholar 

  15. Nicolson, G.L., Tumor and host molecules important in the organ preference of metastasis. Semin. Cancer Biol., 2, 143, 1991.

    CAS  Google Scholar 

  16. Honn, K.V., Grossi, I.M., Timar, J., Chopra, H., and Taylor, J.D., Platelets and cancer metastasis, in Micro-circulation in Cancer Metastasis, Orr, F.W., Buchanan, M., and Weiss, L., Eds., CRC Press, Boca Raton, FL, 1991, 93.

    Google Scholar 

  17. Honn, K.V., Tang, D.G., and Chen, Y.Q. Platelets and cancer metastasis: more than an epiphenomenon. Semin. Thromb. Hemost., 18, 390, 1992.

    Article  Google Scholar 

  18. Honn, K.V., Tang, D.G., and Crissman, J.D., Platelets and cancer metastasis: a casual relationship? Cancer Metastasis Rev., 11, 325, 1992.

    Article  CAS  Google Scholar 

  19. Samuelsson, B., Goldyne, M., Granstrom, E., Hamberg, M., Hammarstrom, S., and Malmstern, C., Prostaglandins and thromboxanes, Annu. Rev. Biochem., 47, 997, 1978.

    Article  CAS  Google Scholar 

  20. Needleman, P., Turk, J., Jakschik, B.A., Morrison, A.R., and Lefkowith, J.B., Arachidonic acid metabolism, Annu. Rev. Biochem., 55, 69, 1986.

    Article  CAS  Google Scholar 

  21. Piper, P.J. and Samhoun, M.D., Leukotrienes, Br. Med. Bull., 43, 297, 1987.

    CAS  Google Scholar 

  22. Spector, A.A., Gordon, J.A., and Moore, S.A., Hydroxyeicosatetraenoic acids (HETEs). Prog. Lipid Res., 27, 271, 1988.

    Article  CAS  Google Scholar 

  23. Honn, K.V. and Chen, Y.Q., Prostacyclin, hydroxy fatty acids and tumor metastasis, in Prostacyclin: New Perspectives in Basic Research and Novel Therapeutic Indications, Rubanyi, G.M. and Vane, J.R., Eds., Elsevier, Amsterdam, 1995.

    Google Scholar 

  24. Chen, Y.Q., Liu, B., Tang, D.G., and Honn, K.V., Fatty acid modulation of tumor cell-platelet-vessel wall interaction, Cancer Metastasis Rev., 1 I, 389, 1992.

    Google Scholar 

  25. Chang, W.C., Ning, C.C., Lin, M.T., and Huang, J.D., Epidermal growth factor enhances a microsomal 12lipox,ygenase activity in A431 cells, in Eicosanoids and Other Bioactive Lipids in Cancer, Inflammation and Radiation Injury, Nigam, S., Honn, K.V., Marnett, L.J., and Walter, T., Eds., Kluwer Academic, Norwell, MA, 1992, 463.

    Google Scholar 

  26. Glasgow, W.C. and Eling, T.E., Epidermal growth factor regulation of linoleic acid metabolism in Syrian hamster embryo fibroblasts, in Eicosanoids and Other Bioactive Lipids in Cancer, Inflammation and Radiation Injury, Nigam, S., Honn, K.V., Marnett, L.J., and Walden T., Eds., Kluwer Academic, Norwell, MA, 1992, p. 467.

    Google Scholar 

  27. Marier, J.A.M., Hla, T., and Maciag, T., Cyclooxygenase is an immediate early gene induced by interleukin-1 in human endothelial cells. J. Biol. Chem., 265, 10805, 1990.

    Google Scholar 

  28. Kast, R., Furstenberger, G., and Marks, F., Transforming growth factor alpha stimulated phospholipase A2 activity in mouse keratinocytes, in Eicosanoids and Other Bioactive Lipids in Cancer, Inflammation and Radiation Injury, Nigam, S., Honn, K.V., Marnett, L.J., and Walden, T., Eds., Kluwer Academic, Norwell, MA, 1992, 459.

    Google Scholar 

  29. Arita, H., Cytokine-induced phospholipase A2 and its possible relationship to eicosanoid formation, in Eicosanoids and Other Bioactive Lipids in Cancer, Inflammation and Radiation Injury., Nigam S., Honn, K.V., Marnett, L.J., and Walden, T., Eds, Kluwer Academic, Norwell, MA, 1992, p. 491.

    Google Scholar 

  30. Spector, A.A., Gordon, J.A., Moore, S.A., Hydroxyeicosatetraenoic acids (HETEs)., Prog. Lipid Res. 27, 271, 1988.

    Article  CAS  Google Scholar 

  31. Natarajan, R., Gu J, L., Rossi, J., Gonzales, N., L.nting, L., XU, 1., and Nadler, J., Elevated glucose and angiotensin II increase 12-lipoxygenase activity and expression in porcine aortic smooth muscle cells., Proc. Natl. Acad. Sci. USA, 90, 4947, 1993.

    CAS  Google Scholar 

  32. Kim, J.A., Gu, J., Natarajian, R., Berliner, J.A., and Nadler, J., Evidence that a leukocyte type of 12lipoxygenase is expressed in normal human vascular and mononuclear cells., Clin. Res., 41, 148A, 1983.

    Google Scholar 

  33. Hadjiangapiou, C., and Spector, A.A., 12-hydroxyeicosatetraenoic acid reduces prostacyclin production by endothelial cells., Prostaglandins 31, 1135, 1986.

    Google Scholar 

  34. Sekiya, F., Takagi, J., Usui, T., Kawajiri, K., Kobayashi, Y., Sato, F., and Saito, Y., I2-hydroxyeicosatetraenoic acid plays a central role in the regulation of platelet activation. Biochem. Biophys. Res. Commun. 179, 345, 1991.

    Article  CAS  Google Scholar 

  35. Hofer, G., Bieglmayer, C.H., Kopp, B., Janish, H., Measurement of eicosanoids in menstrual fluid by the combined use of High pressure chromatography and radio immunoassay., Prostaglandins, 45, 413, 1993.

    CAS  Google Scholar 

  36. Wetzka, B., Schafer, W., Scheibel, M., Nusing, R., Zahradnik, H.D., Eicosanoid production by intrauterine tissues before and after labor in short-term tissue culture., Prostaglandins, 45, 571, 1993.

    CAS  Google Scholar 

  37. Chang, W.C., Liu, Y.W., Ning, C.C., Suzuki, H., Yoshimoto, T., Yamamoto, S., Induction of arachidonate 12-lipoxygenase mRNA by epidermal growth factor in A43I cells., J. Biol. Chem., 268, 18734, 1993.

    CAS  Google Scholar 

  38. Chang, W.C., Ning, C.C, Lin, M.T., Huang, J.D., Epidermal growth factor enhances a microsomal 12lipoxygenase activity in A43I cells., J. Biol. Chem., 267, 3657, 1992.

    CAS  Google Scholar 

  39. Chen, Y.Q., Duniec, Z.M., Liu, B., Hagmann, W., Gao, X., Shimoji, K., Marnett, L.J., Johnson, C.R., Honn, K.V., Endogenous 12(S)-HETE production by tumor cells and its role in metastasis. Cancer Res., 54, 1574, 1994.

    CAS  Google Scholar 

  40. Hagmann, W., Kagawa, D., Renaud, C., Honn, K.V., Activity and protein distribution of I 2-lipoxygenase in FIEL cells: Induction of membrane-association by phorbol ester TPA, modulation of activity by glutathione and 13-HPODE, and Ca’.-dependent translocation to membranes., Prostaglandins, 46, 471, 1993.

    CAS  Google Scholar 

  41. Hagmann, W., Maher, R., Honn, K.V., Intracellular distribution, activity, and Ca’tdependent translocation of 12-lipoxygenase in Lewis lung tumor cells. In: Eicosanoids and Other Bioactive Lipids in Cancer, Inflammation, and Radiation Injury, Honn, K.V., Marnett, L.J., and Nigam S., Eds., Plenum Publishing, in press, 1997.

    Google Scholar 

  42. Liu, B., Timar, J., Howlett, J., Diglio, C.A., Honn, K.V., Lipoxygenase metabolites of arachidonic and linoleic acids modulate the adhesion of tumor cells to endothelium via regulation of protein kinase C., Cell Regul. 2, 1045, 1991.

    CAS  Google Scholar 

  43. Liu, B., Marnett, L.J., Chaudhary, A., Ji, C., Blair, I.A., Johnson, C.R., Diglio, C.A., and Honn, K.V., Biosynthesis of 12(S)-hydroxyeicosatetraenoic acid by BI6 amelanotic melanoma cells is a determinant of their metastatic potential. Lab. Invest., 70, 314, 1994.

    CAS  Google Scholar 

  44. Honn, K.V., Tang, D.G., Grossi, I., Duniec, Z.M., Timar, J., Renaud, C., Leithauser, M., Blair, I., Johnson, C.R., Diglio C.A., Kimler, V.A., Taylor, J.D., and Marnett, L.J., Tumor cell-derived 12(S)-hydroxyeicosatetraenoic acid induces microvascular endothelial cell retraction., Cancer Res., 54, 565, 1994.

    CAS  Google Scholar 

  45. Honn, K.V., Nelson, K.K., Renaud, C., Bazaz, R., Diglio, C.A., Timar, J., Fatty acid modulation of tumor cell adhesion to microvessel endothelium and experimental metastasis., Prostaglandins, 44, 413, 1992.

    CAS  Google Scholar 

  46. Tang, D.G., Honn, K.V., 12-Lipoxygenase, 12(S)-HETE, and cancer metastasis. Annals New York Acad. Sci., 744, 199, 194.

    Google Scholar 

  47. Timar, J., Chen, Y.Q., Liu, B, Bazaz, R., Taylor, J.D., Honn, K.V., The lipoxygenase metabolite 12(S)HETE promotes allb133 integrin-mediated tumor cell spreading on fibronectin, Int. J. Cancer, 52, 594, 1992.

    Article  CAS  Google Scholar 

  48. Honn, K.V., Tang, D.G., Grossi, I.M., Renaud, C., Duniec, Z.M., Johnson, C.R., Diglio, C.A., Enhanced endothelial cell retraction mediated by 12(S)-HETE: A proposed mechanism for the role of platelets in tumor cell metastasis. Exptl. Cell. Res., 210, 1, 1994.

    Article  CAS  Google Scholar 

  49. Liotta, L.A., Mandler, R., Murano, G., Katz, D.A., Gordon, R.K., Chiang, P.K., Schiffman, E., Tumor-cell autocrine motility factor. Proc. Natl. Acad. Sci. USA, 83, 3302, 1986.

    Article  CAS  Google Scholar 

  50. Watanabe, H., Carmi, R, Hogan, V., Raz, T., Silletti, S., Nabi, I.R., and Raz, A., Purification of human tumor cell autocrine motility factor and molecular cloning of its receptor., J. Biol. Chem., 226, 13442, 1991.

    Google Scholar 

  51. Ruoslahti, E., Giancotti, F.G., Integrins and tumor cell dissemination., Cancer Cells 4, 119, 1989.

    Google Scholar 

  52. Singer, I.J., Scott, S., Kawaka, D.W., Kazazis, D.M., Adhesosomes: specific granules containing receptors for laminin, c3bi, fibrinogen, fibronectin and vitronectin in human polymorphonuclear leukocytes and monocytes., J. Cell. Biol. 109, 3169, 1989.

    Article  CAS  Google Scholar 

  53. Chopra, H., Timar, J., Chen, Y.Q., Rong, X.H., Grossi, I.M., Fitzgerald, L.A., Taylor, J.D., and Honn, K.V., The lipoxygenase metabolite 12(S)-HETE induces a cytoskeleton-dependent increase in surface expression of integrin allb133 on melanoma cells., Int. J. Cancer, 49, 774, 1991.

    Article  CAS  Google Scholar 

  54. Zachary, I., Rozengurt, E., Focal adhesion kinase (p125FAK): A point of convergence in the action of neuropeptides, integrins, and oncogenes., Cell 71, 891, 1992.

    Article  CAS  Google Scholar 

  55. Shaller, M.D., Borman, C.A., Cobb, B.S., Vines, R.R., Reynolds, A.B., and Parsons, T.J., pp125F4K, a structurally distinctive protein-tyrosine kinase associated with focal adhesions, Proc. Natl. Acad. Sci. USA, 89, 5192, 1992.

    Article  Google Scholar 

  56. Guan, J.L., and Shalloway, D., Regulation of focal adhesion-as-associated protein tyrosine kinase by both cellular adhesion on oncogenic transformation., Nature, 358, 690, 1992.

    Article  CAS  Google Scholar 

  57. Grossi, I.M., Fitzgerald, L.A., Unbarger, L.A., Nelson, K.D., Diglio, C.A., Taylor, J.D., and Honn, K.V., Bi-directional control of membrane expression and/or activation of the tumor cell IRGpIIB/llla receptor and tumor cell adhesion by lipoxygenase products of arachidonic and linoleic acid., Cancer Res. 49, 1029, 1989.

    CAS  Google Scholar 

  58. Chang, Y.S., Chen, Y.Q., Timar, J., Grossi, I.M., Fitzgerald, L.A., Diglio, C.A., and Honn, K.V., Increased expression of allbß3 integrin in subpopulations of murine melanoma cells with high lung-colonizing ability., Int. J. Cancer, 51, 445, 1992.

    Article  CAS  Google Scholar 

  59. Chen, Y.Q., Gao, X., Timar, J., Tang, D.G., Grossi, I.M., Chelladurai, M., Kunicki, T.J., Fligiel, S.E.G., Taylor, J.D., and Bonn, K.V., Identification of the allb133 integrin in murine tumor cells., J. Biol. Chem., 267, 17314, 1992.

    CAS  Google Scholar 

  60. Chopra, H., Timar, J., Rong, X., Grossi, I.M., Hatfield, J.S., Fligiel, S.E.G., Finch, C.A., Taylor, J.D., and Honn, K.V., Is there a role for the tumor cell integrin atlbf33 and cytoskeleton in tumor cell-platelet interaction?, Clin. Exptl. Metastasis, I0, 125, 1992.

    Article  CAS  Google Scholar 

  61. Timar, J., Silletti, S., Bazaz, R., Raz, A., and Honn, K.V., Regulation of melanoma-cell motility by the lipoxygenase metabolite 12(S)-HETE., Int. J. Cancer, 55, 1003, 1993.

    Article  CAS  Google Scholar 

  62. Silletti, S., and Raz, A., Autocrine motility factor (AMF) is a growth factor., Biochem. Biophys. Res. Commun., 1994, 446, 1993.

    Google Scholar 

  63. Liu, B., Maher, R.J., Hannun, Y.A., Porter, A.T., and Honn, K.V., I2(S)-HETE increases in invasive potential of prostate tumor cells through selective activation of PKCa., J. Natl. Cancer Inst., 86, 1145. 1994.

    Article  CAS  Google Scholar 

  64. Honn, K.V., Timar, J., Rozhin, J., Bazaz, R., Sameni, M., Ziegler, G., and Sloane, B.F., A lipoxygenase metabolite, I 2(S)-HETE, stimulates protein kinase C-mediated release of cathespin B from malignant cells., Exptl. Cell. Res., 214, 120, 1994.

    Article  CAS  Google Scholar 

  65. Schmitt, M. and Graff, J.H., Tumor-associated proteases., Fibrinolysis, 6, 3, 1992.

    CAS  Google Scholar 

  66. Sloane, B.F., Moin, K. Sameni, M., Tait, L.R., Rozhin, J., and Ziegler, J., Membrane association of cathepsin B can be induced by transfection of human breast epithelial cells with c-Ha-ras oncogene., J. Cell Sci., 107, 373, 1994.

    CAS  Google Scholar 

  67. Sloane, B.F., Moin, K., Krepela, E. and Rozhin, J., Cathepsin B and its endogenous inhibitors: the role in tumor cell malignancy., Cancer Metastasis Rev., 9, 333, 1990.

    Article  CAS  Google Scholar 

  68. Sloane, B.F., Rozhin, J., Johnson, K., Taylor, J., Crissman, J.D., and Honn, K.V., Cathepsin B: association with plasma membrane in metastatic tumors., Proc. Natl. Acad. Sci. USA, 83, 2483, 1986.

    Article  CAS  Google Scholar 

  69. Sloane, B.F., Rozhin, J.R., Gomez, A.P., Grossi, I.M., and Honn, K.V., Effects of I2-hydroxyeicosatetraenoic acid on release of cathepsin B and cysteine proteinase inhibitors from malignant melanoma cells. In: Honn, K.V., Marnett, L.J., Nigam, S., Walden, T.L., Eds., Eicosanoids and Other Bioactive Lipids in Cancer and Radiation Injury., Kluwer, Boston, MA, p. 373, 1991.

    Chapter  Google Scholar 

  70. Timar, J., Tang, D.G., Bazaz, R., Haddard, M.M., Kimler, V.A., Taylor, J.D., T and Honn, K.V., PKC mediates 12(S)-HETE-induced cytoskeletal rearrangement in BI6a melanoma cells., Cell Motil. Cytoskel., 26, 49, 1993.

    Article  CAS  Google Scholar 

  71. Tang, D.G., and Honn, K.V., Role of protein kinase C and phosphatases in I2(S)-HETE-induced tumor cell cytoskeletal reorganization. In: Honn, K.V., Marnett, L.J., Nigam, S., Eds., Eicosanoids and Other Bioactive Lipids in Cancer, Inflammation and Radiation Injury., Kluwer, Boston, MA, in press, 1997.

    Google Scholar 

  72. Piomelli, D., Volterra, A., Dale, N., Lipoxygenase metabolites of arachidonic acid as second messengers for presynaptic inhibition of aplysia sensory cells., Nature, 328, 38, 1987.

    Article  CAS  Google Scholar 

  73. Nadler, J.L, Natarajan, R., and Stem, N., Specific action of the lipoxygenase pathway in mediating angiotension II-induced aldosterone synthesis in isolated adrenal glomerula cells, J. Clin. Invest., 80, 1763, 1987.

    Article  CAS  Google Scholar 

  74. Chan, C.C., Duhamel, L., and Ford-Hutchinson, A., Leukotriene B4 and 12- hydroxyeicosatetraenoic acid stimulate epidermal proliferation in vivo in the guinea pig., J. Invest. Dermatol., 85, 333, 1985.

    Article  CAS  Google Scholar 

  75. Antonipillai, I., I2-Lipoxygenase products are potent inhibitors of prostacyclin-induced renin release., Proc. Soc. Exp. Biol. Med., 194, 224, 1990.

    CAS  Google Scholar 

  76. Etingin, O.R., and Hajjar, D.P., Evidence for cytokine regulation of cholesterol metabolism in herpes viral-infected arterial cells by the lipoxygenase pathway., J. Lipid Res., 31, 299, 1990.

    CAS  Google Scholar 

  77. Tang, D.G., Diglio, C.A., and Honn, K.V., Transcriptional activation of endothelial cell integrin alpha, by protein kinase C activator 12(S)-HETE., J. Cell. Sci., 108, 2679, 1995.

    Google Scholar 

  78. Honn, K.V., Tang, D., Grossi, I.M., Duniec, Z.M., Timar, J., Renaud, C., Leithauser, M., Blair, I., Diglio, C.A., Taylor, J.D., and Mamett, L.J., Tumor cell-derived 12(S)-hydroxyeicosatetraenoic acid induces microvascular endothelial cell retraction., Cancer Res., 54, 565, 1994.

    CAS  Google Scholar 

  79. O’Brian, C.A., and Ward, N.E., Biology of protein kinase C family., Cancer Metastasis Rev., 8, 199, 1989.

    Article  Google Scholar 

  80. Liu, B., Khan, W.A., Hannun, Y.A., Timar, J., Taylor, J.D., Lundy, S., Butovich, I., and Honn, K.V., 12(S)HETE and 13(S)-HODE regulation of protein kinase Ca in melanoma cells: role of receptor mediated hydrolysis of inositol phospholipids., Proc. Natl. Acad. Sci. USA, 92, 9323, 1995.

    Article  CAS  Google Scholar 

  81. Honn, K.V., Tang, D.G., Gao, Z., Butovich, I.A., Liu, B., Timar, J., and Hagmann, W., I2-Lipoxygenases and 12(S)HETE: role in cancer metastasis., Cancer Metastasis Rev., 13, 365, 1994.

    Article  CAS  Google Scholar 

  82. Liu, B., Renaud, C., Nelson, K.K., Chen, Y.Q., Bazaz, R., Kowynia, J., Timar, J., Diglio C.A., and Honn, K.V., Protein kinase C inhibitor calphostin C reduces B16 amelanotic melanoma cell adhesion to endothelium and lung colonization., Int. J. Cancer, 52, 147, 1992.

    Article  CAS  Google Scholar 

  83. Berridge, M.J. and Irvine, R.F., Inositol phosphates and cell signaling., Nature, 341, 197, 1989.

    Article  CAS  Google Scholar 

  84. Cho, Y., and Ziboh, V.A., 13-Hydroxyocatadecaenoic acid reverse epidermal hyperproliferaiton via selective inhibition of protein kinase C-b activity. Biochem. Biophys. Res. Commun., 201, 257, 1994.

    CAS  Google Scholar 

  85. Gross E., Ruzicka, T., Restorff, B.V., Stolz, W., and Klotz, K.N., High-affinity binding and lack of growth-promoting activity of 12(S)hydroxyeicosatatraenoic acid (12[S]HETE) in a human epidermal cell lines., J. Invest. Dermatol., 94, 446, 1990.

    Article  CAS  Google Scholar 

  86. Croset, M., and Lagarde, M., Stereospecific inhibition of PGHZ induced aggregation by lipoxygenase products of eicosaenoic acids., Biochem. Biophys. Res. Commun., 112, 878, 1983.

    Article  CAS  Google Scholar 

  87. Fonlupt, P., Croset, M., and Lagarde, M., I2(S)-HETE inhibits the binding of PGH,/TXA, receptor ligands in human platelets, Thromb. Res., 63, 239, 1991.

    CAS  Google Scholar 

  88. Herbertsson, H. and Hammarstrom, S., High-affinity binding sites for 12(S)hydroxy-5,8,10,14-eicosatetraenoic acid (12(S)HETE) in carcinoma cells, FEBS Lett., 298. 249, 1992.

    Article  CAS  Google Scholar 

  89. Herbertsson, H. and Hammarstrom, S., Cytosolic 12(S)hydroxy-5,8,10,14- eicosatetraenoic acid binding sites in carcinoma cells. In: Honn, K.V., Mamett, L.J., Nigam, S., Eds., Eicosanoids and Other Bioactive Lipids in Cancer, Inflammation and Radiation Injury., Kluwer Acad. Publ., Norwell, MA, 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tang, K., Honn, K.V. (1997). Lipoxygenase Metabolites and Cancer Metastasis. In: Dietary Fat and Cancer. Advances in Experimental Medicine and Biology, vol 422. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-2670-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2670-1_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3282-2

  • Online ISBN: 978-1-4757-2670-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics