Skip to main content

Fatty Acids and Breast Cancer Cell Proliferation

  • Chapter
Dietary Fat and Cancer

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 422))

Abstract

Experimental evidence using animal models and cultured cells has clearly linked dietary fat to breast cancer. More than 150 studies using animal models of carcinogen-induced, transplantable, “spontaneous” and metastatic breast cancer as well as in vitro investigations employing cultured breast cancer cells provide an impressive array of support for the conclusion that dietary fat influences breast cancer cell proliferation and tumorigenesis (1–11).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Welsch CW. Relationship between dietary fat and experimental mammary tumorigenesis: A review and critique. Cancer Res 52 (suppl): 2040s–2048s, 1992.

    Google Scholar 

  2. Ip C, Chin SF, Scimeca JA, Pariza MW. Mammary cancer prevention by conjugated dienoic derivative of linoleic acid. Cancer Res 51: 6118–6124, 1991.

    CAS  Google Scholar 

  3. Cohen LA, Kendall ME, Zang E, Meschter C, Rose DR Modulation of N-nitrosomethylurea-induced mammary tumor promotion by dietary fiber and fat. J Natl Cancer lnst 83: 496–501, 1991.

    Article  CAS  Google Scholar 

  4. Rose DP, Connolly JM, Meschter CL. The effect of dietary fat on human breast cancer growth and lung metastasis in nude mice. J Nati Cancer Inst 83: 1491–1495, 1991.

    Article  CAS  Google Scholar 

  5. Rose DP, Connolly JM. The influence of dietary fat intake on local recurrence and progression of metastasis arising from MDA-MB-435 human breast cancer cells in nude mice after excision of the primary tumor. Nutr Cancer 18: 1 13–122, 1992.

    Google Scholar 

  6. Zevenbergen JL, Verschuren PM, Faalberg J, van Stratum P, Vles RO. The effect of the amount of dietary fat on the development of mammary tumors in BALB/c-MTV mice. Nutr Cancer 17: 9–18, 1992.

    Article  CAS  Google Scholar 

  7. Mizukami Y, Nonomura A, Noguchi M, Taniya T, Thomas M, Nakamura S, Miyazaki I. The effects of high and low dietary fat and indometracin on tumor growth, hormone receptor status and growth factor expression in DMBA-induced rat breast cancer. lnt J Tissue React 14: 269–276, 1992.

    CAS  Google Scholar 

  8. Meschter CL, Connolly JM, Rose DP. Influence of regional location of the inoculation site and dietary fat on the pathology of MDA-MB-435 human breast cancer cell-derived tumors grown in nude mice. Clin Exp Metastasis 10: 167–173, 1992.

    Article  CAS  Google Scholar 

  9. Shultz TD, Chew BP, Seamon WR. Differential stimulatory and inhibitory responses of human MCF-7 breast cancer cells to linoleic acid and conjugated linoleic acid in culture. Anticancer Res 12: 2143–2145, 1992.

    CAS  Google Scholar 

  10. DeWille JW, Waddell K, Steinmeyer C, Farmer JJ. Dietary fat promotes mammary tumorigenesis in MMTV/V-Ha-ras transgenic mice. Cancer Lett 69: 59–66, 1993.

    Article  CAS  Google Scholar 

  11. Mehta R, Harris S, Gunnett C, Runce O, Hartle D. The effects of patterned-calorie-restricted diets on mammary tumor incidence and plasma endothelin levels in DMBA-treated rats. Carcinogenesis 14: 1693–1696, 1993.

    Article  CAS  Google Scholar 

  12. Prentice RL, Sheppard L. Dietary fat and cancer: Consistency of the epidemiologic data, and disease prevention that may follow from a practical reduction in fat consumption. Cancer Causes Control 1: 81–97, 1990.

    Google Scholar 

  13. Carroll KK. Dietary fat and breast cancer. Lipids 27: 793–797, 1992.

    Article  CAS  Google Scholar 

  14. Boyd NF, Martin LI, Noffel M, Lockwood GA, Trichter DL. A meta-analysis of studies of dietary fat and breast cancer risk. Br J Cancer 68: 627–636, 1993.

    Article  CAS  Google Scholar 

  15. Howe GR, Hirohata T, Hislop TG, Iscovich JM, Yaun JM, Katsouyanni K, Lubin F, Marubini E, Modan B, Rohan T, Toniolo P, Shunzhang Y. Dietary factors and risk of breast cancer: Combined analysis of 12 case-control studies. J Natl Cancer lnst 82: 561–569, 1990.

    Article  CAS  Google Scholar 

  16. Byers T. Nutritional risk factors for breast cancer. Cancer 74: 288–295, 1994.

    Article  CAS  Google Scholar 

  17. Hunter et al. Cohort studies of fat intake and the risk of breast cancer-a pooled analysis New Engl. J. Med. 334: 356–361, 1996.

    Google Scholar 

  18. Tinsley IJ, Schmitz JA, Pierce DA. Influence of dietary fatty acids on the incidence of mammary tumors in the C3H mouse. Cancer Res 41: 1460–1465, 1981.

    CAS  Google Scholar 

  19. Bennet A.S. Effect of dietary stearic acid on the genesis of spontaneous mammary adenocarcinomas in strain A/ST mice. Mt J Cancer 34: 529–533, 1984.

    Google Scholar 

  20. Kuhajda FP, Jenner K, Wood FD, Randolph AH, Jacobs LB, Dick JD, Pasternack GR. Fatty acid synthesis: A potential selective target for antineoplastic therapy. J Biol Chem 91: 6379–6383, 1994.

    CAS  Google Scholar 

  21. Ip C. Controversial issues of dietary fat and experimental mammary carcinogenesis. Prey Med 22: 728–737, 1993.

    Article  CAS  Google Scholar 

  22. Bradlow HL, Fishman J. Diet and cancer. Nature 361: 390, 1993.

    Article  CAS  Google Scholar 

  23. Wynder E, Cohen L, Rose D, Stellman S. Dietary fat and breast cancer. J Clin Epidemiol 47: 217–222, 1994.

    Article  CAS  Google Scholar 

  24. Cuzick J. Methodologie issues in the chemoprevention of breast cancer. Cancer Detect Prey 16: 81–85, 1992.

    CAS  Google Scholar 

  25. Silvestrini R, Daidone MG, Valagussa P, Di Fronzo G, Mezzanotte G, Mariani L, Bonadonna G. 3Hthymidine-labeling index as a prognostic indicator in node-positive breast cancer. J Clin Oncol 8: 1321–1326, 1990.

    CAS  Google Scholar 

  26. Tubiana M, Pejovic MH, Koscielny S, Chavaudra N, Malaise E. Growth rate, kinetics of tumor cell prolieration and long-term outcome in human breast cancer. lnt J Cancer 44: 17–22, 1989.

    Article  CAS  Google Scholar 

  27. Hery M, Gioanni J, Lalanne CM, Namer M, Courdi A. The DNA labeling index: A prognostic factor in node-negative breast cancer. Breast Cancer Res Treat 9: 207–212, 1987.

    Article  CAS  Google Scholar 

  28. Silvestrini R, Daidone MG, Valagussa P, Di Fronzo G, Mezzanotte G, Bonadonna G. Cell kinetics as a prognostic indicator in node-negative breast cancer. Eur J Cancer 25: 1165–1171, 1989.

    Article  CAS  Google Scholar 

  29. Meyer JS, Province M. Proliferative index of breast carcinoma by thymidine labeling: Prognostic power independent of stage, estrogen and progesterone receptors. Breast Cancer Res Treat 12: 191–199, 1988.

    Article  CAS  Google Scholar 

  30. Paradiso A, Mangia A, Picciariello M. Fattori prognostici nel carcinoma della mammella operabile N.; attivita prolierative e caratteristiche clinico patologiche. Folia Oncol 13: 1–13, 1992.

    Google Scholar 

  31. Branden LM, Carroll KK. Dietary polyunsaturated fat in relation to mammary carcinogenesis in rats. Lipids 21: 285–288, 1986.

    Article  Google Scholar 

  32. Cohen LA, Thompson DO, Choi K, Karmall RA, Rose DP. Dietary fat and mammary cancer. H. Modulation of serum and tumor lipid composition and tumor prostaglandins by different dietary fats: association with tumor incidence patterns. J Natl Cancer lnst 77: 43–51, 1986.

    CAS  Google Scholar 

  33. Cohen LA, Thompson DO, Maeura Y, Choi K, Blank ME, Rose D. P. Dietary fat and mammary cancer. I. Promoting effects of different dietary fats on N-nitrosomethylurea-induced rat mammary tumorigenesis. J Natl Cancer Inst 77: 33–42, 1986.

    CAS  Google Scholar 

  34. Dao TL, Chan PC. Hormones and dietary fat as promoters in mammary carcinogenesis. Envimn Health Perspect 50: 219–225, 1983.

    Article  CAS  Google Scholar 

  35. Gabriel HF, Melhem MF, Rao KN. Enhancement of DMBA-induced mammary cancer in Wistar rats by unsaturated fat and cholestyramine. In Vivo 1. 303–308, 1987.

    Google Scholar 

  36. Hopkins, GJ, Carroll KK. Relationship between amount and type of dietary fat in promotion of mammary carcinogenesis induced by 7.12-dimethylbenzanthracene. J Natl Cancer Inst 62: 1009–1012, 1979.

    CAS  Google Scholar 

  37. Hopkins GJ, Kennedy TG, Carroll KK. Polyunsaturated fatty acids as promoters of mammary carcinogenesis induced in Sprague-Dawley rats by 7,12-dimethylbenzanthracene. J Natl Cancer Inst 66: 517–522, 1981

    CAS  Google Scholar 

  38. Ip C, Carter CA, Ip MM. Requirement of essential fatty acid for mammary tumorigenesis in the rat. Cancer Res 45: 1997–2001, 1985.

    CAS  Google Scholar 

  39. Rogers AE, Wetsel WC. Mammary carcinogenesis in rats fed different amounts and types of fat. Cancer Res 41: 3735–3737, 1981.

    CAS  Google Scholar 

  40. Sundram K, Khor HT, Ong ASH, Pathmanathan R. Effect of dietary palm oils on mammary carcinogenesis in female rats induced by 7,12-dimethylbenzanthracene. Cancer Res 49: 1447–1451, 1989.

    CAS  Google Scholar 

  41. Wetsel WC, Rogers AE, Newberne PM. Dietary fat and DMBA mammary carcinogenesis in rats. Cancer Detect Prey 4: 535–543, 1981.

    CAS  Google Scholar 

  42. National Research Council. Nutrient Requirements of Laboratory Animals. ed. 3, Washington D.C. National Academy of Sciences pp 9–10, 1978.

    Google Scholar 

  43. Rogers AE, Conner B, Boulanger C, Lee S. Mammary tumorigenesis in rats fed diets high in lard. Lipids 21: 275–280, 1986.

    Article  CAS  Google Scholar 

  44. Harman D. Free radical theory of aging: Effect of the amount and degree of unsaturation of dietary fat on mortality rate. J Gerontol 26: 451–457, 1971.

    CAS  Google Scholar 

  45. Kort WJ, Zondervan PE, Hulsman LOM. Weijma IM, Hulsmann WC, Westbroek DL. Spontaneous tumor incidence in female Brown Norway rats after lifelong diets high and low in linoleic acid. J Natl Cancer Inst 74: 529–536, 1985.

    CAS  Google Scholar 

  46. Tinsley IJ, Wilson G, Lowry RR. Tissue fatty acid changes and tumor incidence in C3H mice ingesting cottonseed oil. Lipids 17: 115–117. 1982.

    Article  CAS  Google Scholar 

  47. Abraham S, Faulkin LJ, Hillyard LA, Mitchell DJ. Effect of dietary fat on tumorigenesis in the mouse mammary gland. J Natl Cancer Inst 72: 1421–1429, 1984.

    CAS  Google Scholar 

  48. Abraham S, Hillyard LA. Effect of dietary 18-carbon fatty acids on growth of transplantable mammary adenocarcinomas in mice. J Natl Cancer Inst 71: 601–605, 1983.

    CAS  Google Scholar 

  49. Erickson KL, Thomas IK. The role of dietary fat in mammary tumorigenesis. Food Technol 39: 69–73, 1985.

    CAS  Google Scholar 

  50. Gabor H, Abraham S. Effect of dietary menhaden oil on tumor cell loss and the accumulation of mass of a transplantable mammary adenocarcinoma in BALB/c mice. J Natl Cancer Inst 76: 1223–1229, 1986.

    CAS  Google Scholar 

  51. Gabor H, Hillyard LA, Abraham S. Effect of dietary fat on growth kinetics of transplantable mammary adenocarcinoma in BALB/c mice. J Nati Cancer Inst 74: 1299–1305, 1985.

    CAS  Google Scholar 

  52. Giovarelli M, Padula E, Ugazio G, Forni G, Cavallo G. Strain-and sex-linked effects of dietary polyunsaturated fatty acids on tumor growth and immune functions in mice. Cancer Res 40: 3745–3749, 1980.

    CAS  Google Scholar 

  53. Hillyard LA, Abraham S. Effect of dietary polyunsaturated fatty acids on growth of mammary adenocarcinomas in mice and rats. Cancer Res 39: 4430–4437, 1979.

    CAS  Google Scholar 

  54. Hopkins GJ, West CE. Effect of dietary polyunsaturated fat on the growth of a transplantable adenocarcinoma in C3HA’fB mice. J Natl Cancer Inst 58: 753–756, 1977.

    CAS  Google Scholar 

  55. Rao GA, Abraham S. Enhanced growth rate of transplanted mammary adenocarcinoma induced in C3H mice by dietary linoleate. J Natl Cancer Inst 56: 431–432, 1976.

    CAS  Google Scholar 

  56. Rao GA, Abraham S. Reduced growth rate of transplantable mammary adenocarcinoma in C3H mice fed eicosa-5,8, 11,14-tetraenoic acid. J Natl Cancer Inst 58: 445–447, 1977.

    CAS  Google Scholar 

  57. Rose DP, Connolly JM. Effects of fatty acids and inhibitors of eicosanoid synthesis on the growth of a human breast cancer cell line in culture. Cancer Res 50: 7139–7144, 1990.

    CAS  Google Scholar 

  58. Buckman DK, Hubbard NE, Erickson KL. Eicosanoids and linoleate-enhanced growth of mouse mammary tumor cells. Prostaglandins Leukot Essent Fatty Acids 44: 177–184, 1991.

    Article  CAS  Google Scholar 

  59. Buckman DK, Erickson KL. Relationship of the uptake and 13-oxidation of 18-carbon fatty acids with stimulation of murine mammary tumor cell growth. Cancer Lett 59: 257–265, 1991.

    Article  CAS  Google Scholar 

  60. Buckman DK, Chapkin RS, Erickson KL. Modulation of mouse mammary tumor growth and linoleate enhanced metastasis by oleate. J Nutr 120: 148–157, 1990.

    CAS  Google Scholar 

  61. Aksoy M, Berger MR, Schmahl D. The influence of different levels of dietary fat on the incidence and growth of MNU-induced mammary carcinoma in rats. Nutr Cancer 9: 227–235, 1987.

    Article  CAS  Google Scholar 

  62. Carroll KK, Khor HT. Effects of level and type of dietary fat on incidence of mammary tumors induced in female Sprague-Dawley rats by 7,12-dimethylbenzanthracene. Lipids 6: 415–420, 1971.

    Article  CAS  Google Scholar 

  63. Dayton S, Hashimoto S, Wollman J. Effect of high-oleic and high-linoleic safflower oils on mammary tumors induced in rats by 7,12-dimethylbenzanthracene. J Nutr 107: 1353–1360, 1977.

    CAS  Google Scholar 

  64. Brown RR. Effects of dietary fat on incidence of spontaneous and induced cancer in mice. Cancer Res 41: 3741–3742, 1981.

    CAS  Google Scholar 

  65. Erickson KL, Schlanger DS, Adams DA, Fregeau DR, Stern JS. Influence of dietary fatty acid concentration and geometric configuration on murine mammary tumorigenesis and experimental metastases. J Noir 11: 1834–1842, 1984.

    Google Scholar 

  66. Katz EB, Boylan ES. Effect of the quality of dietary fat on tumor growth and metastasis from a rat mammary adenocarcinoma. Nutr Cancer 12: 343–350, 1989.

    Article  CAS  Google Scholar 

  67. Abou-El-Ela SH, Prasse KW, Carroll R, Bunce OR. Effects of dietary primrose oil on mammary tumorigenesis induced by 7,12-dimethylbenzanthracene. Lipids 22: 1041–1044, 1987.

    Article  CAS  Google Scholar 

  68. Abou-El-Ela SH, Prasse KW, Carroll R, Wade A, Dharwadkar S, Bunce OR. Eicosaenoic synthesis in 7,12dimethylbenzanthracene-induced mammary carcinomas in Sprague-Dawley rats fed primrose, menhaden or corn oil diets. Lipids 23: 948–954, 1988.

    Article  CAS  Google Scholar 

  69. Cameron E, Bland J, Marcuson R. Divergent effects of to6 and co3 fatty acids on mammary tumor development in C31-1/Heston mice treated with DMBA. Nutr Rea 9: 383–393, 1989.

    Article  CAS  Google Scholar 

  70. Ghayur T, Horrobin DF. Effects of essential fatty acids in the form of evening primrose oil on the growth of the rat R3230AC transplantable mammary tumor. IRCS Med Sci 9: 582, 1981.

    Google Scholar 

  71. Karmall RA, Marsh J, Fuchs C. Effects of dietary enrichment with g-linolenic acid upon growth of the R3230AC mammary adenocarcinoma. J Nutr Growth Cancer 2: 41–51, 1985.

    Google Scholar 

  72. Abou-El-Ela SH, Prasse KW, Farrell BL, Carroll RW, Wade AE, Bunce OR. Effects of DL-2-difluoromethylornthine and indomethacin on mammary tumor promotion in rats fed high n-3 and/or n-6 fat diets. Cancer Res 49: 1434–1440, 1989.

    CAS  Google Scholar 

  73. Carroll KK, Braden LM. Dietary fat and mammary carcinogenesis. Nutr Cancer 6: 254–259, 1985.

    Article  Google Scholar 

  74. Mansour EG, Ravdin PM, Dressler L. Prognostic factors in early breast carcinoma. Cancer 74: 381–400, 1994.

    Article  CAS  Google Scholar 

  75. Dickson BB. Stimulatory and inhibitory growth factors and breast cancer. J Steroid Biochern Mol Biol 37: 795–811, 1990.

    Article  CAS  Google Scholar 

  76. Seshadri R, Mcleay WR, Horsfall DJ, McCaul K. Prospective study of the prognostic significance of epidermal growth factor receptor in primary breast cancer. lot J Cancer 69: 23–27, 1996.

    CAS  Google Scholar 

  77. Klijn JG, Berns PM, Schmitz PI, Foekens JA. The clinical significance of epidermal growth factor receptor (EGF-R) in human breast cancer: A review on 5232 patients. Endocrinology Rev 13: 3–17, 1992.

    CAS  Google Scholar 

  78. Sainsbury JR, Farndon JR, Needham GK, Malcolm AJ, Harris AL. Epidermal growth factor receptor status as predictor of early recurrence of and from breast cancer. Lancet 1: 1398–1402, 1987.

    CAS  Google Scholar 

  79. Macias A, Azavedo E, Hagerstrom T, Klintenberg C, Perez R, Skoog L. Prognostic significance of the receptor for epidermal growth factor in human mammary carcinomas. Anticancer Res 7: 459–464, 1987.

    CAS  Google Scholar 

  80. NSMD Wickramasinghe, H Jo, JM McDonald, and RW Hardy Stearate inhibition of breast cancer cell proliferation: A mechanism involving epidermal growth factor receptor and Gi-proteins. The American Journal of Pathology 148: 987–995, 1996.

    CAS  Google Scholar 

  81. Church JG, Buick RN. G-protein-mediated epidermal growth factor signal transduction in a human breast cancer cell line. J Biol Chem 263: 4242–4246, 1988.

    CAS  Google Scholar 

  82. Johnson RM, Garrison JC. Epidermal growth factor and Angiotensin II stimulate formation of inositol 1,4,5 -and 1,3,4-triphosphate in hepatocytes. J Biol Chem 262: 17285–17293, 1987.

    CAS  Google Scholar 

  83. Yang L, Baffy G, Rhee SG, Manning D, Hansen CA, Williamson JR. Pertussis toxin-sensitive G. protein involvement in epidermal growth factor-induced activation of phospholipase c-g in rat hepatocytes. J Biol Chem 33: 22451–22458, 1991.

    Google Scholar 

  84. De Vivo M, Gershengorn MC. In ADP-ribosylating toxins and G proteins: Insights into signal transduction (Moss J, and Vaughan M. Eds) pp. 267–293, American Society for Microbiology, Washington, D.C.

    Google Scholar 

  85. Crouch MF. Growth factor-induced cell division is paralleled by translocation of G.a to the nucleus. FASEB J 5: 200–206, 1991.

    CAS  Google Scholar 

  86. Trigatti BL, Gerber GE. A direct role for serum albumin in the cellular uptake of long-chain fatty acids. Biochem J 308: 155–159, 1995.

    CAS  Google Scholar 

  87. Spector AA, Hoak IC: An improved method for the addition of long-chain free fatty acid to protein solutions. Anal Biochem 32: 297–302, 1969.

    Article  CAS  Google Scholar 

  88. Hardy RW, Ladenson JH, Henriksen EJ, Holloszy JO, McDonald JM. Palmitate stimulates glucose transport in rat adipocytes by a mechanism involving translocation of the insulin sensitive glucose transporter (GLUT 4). Biochem Biophys Res Commun 177: 343–349, 1991.

    Article  CAS  Google Scholar 

  89. Bonanome A, Grundy SM. Effect of dietary stearic acid on plasma cholesterol and lipoprotein levels. New Engl. J. Med. 318: 1244–1248, 1988.

    Article  CAS  Google Scholar 

  90. Kris-Etherton PM, Derr J, Mitchell DC, Mustad VA, Russell ME, McDonnell ET, Salabsky D, Pearson TA, The role of fatty acid saturation on plasma lipids, lipoproteins and apolipoproteins. Metabolism 42: 121–129, 1993.

    Article  CAS  Google Scholar 

  91. Ahrens EH Jr, Hirsch J, Insull W Jr, Tsaltas TT, Blomstrand R, Peterson ML, The influence of dietary fats on serum-lipid levels in man. Lancet 1: 943–953, 1957.

    Article  Google Scholar 

  92. Hegsted DM, McGandy RB, Myers ML, Stare FJ, Quantitative effects of dietary fat on serum cholesterol in man. Am J Clin Nutr 17: 281–295, 1965

    CAS  Google Scholar 

  93. Keys A, Anderson JT, Grande F, Serum cholesterol response to changes in the diet. IV. Particular saturated fatty acids in the diet. Metabolism 14:776–787, 1965,

    Google Scholar 

  94. Grundy SM, Influence of stearic acid on cholesterol metabolism relative to other long-chain fatty acids. Am J Clin Nutr 60: 9865–990S, 1994.

    Google Scholar 

  95. Mustad VA, Kris-Etherton PM, Derr J, Reddy CC, Pearson TA, Comparison of the effects of diets rich in stearic acid versus myristic acid and lauric acid on platelet fatty acids and excretion of thromboxane A2 and PGI2 metabolites in healthy young men. Metabolism 42: 463–469, 1993.

    Article  CAS  Google Scholar 

  96. Hoak JC, Stearic acid, clotting, and thrombosis. Am J Clin Nutr 60: 10505–10535, 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hardy, R.W., Wickramasinghe, N.S.M.D., Ke, S.C., Wells, A. (1997). Fatty Acids and Breast Cancer Cell Proliferation. In: Dietary Fat and Cancer. Advances in Experimental Medicine and Biology, vol 422. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-2670-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2670-1_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3282-2

  • Online ISBN: 978-1-4757-2670-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics