Skip to main content

Electrophysiological Effects of Dopamine Receptor Stimulation

  • Chapter
Book cover The Dopamine Receptors

Part of the book series: The Receptors ((REC))

Abstract

The involvement of dopamine in multiple aspects of brain function has produced a great interest in dopaminergic pharmacology, and a large number of dopamine receptor ligands have been developed and tested. Dopamine receptors were initially divided into D1 and D2* subtypes on the basis of pharmacological and biochemical criteria (1). D1 receptors mediate stimulation, and D2 receptors inhibition, of adenylate cyclase by dopamine, and certain compounds interact selectively with the two types of receptor (2). In recent years, molecular cloning studies have demonstrated the presence of at least five genetically different dopamine receptor subtypes in the mammalian nervous system (3, 4). Since the cloned D 1 and D5 receptors are highly homologous and pharmacologically similar, they can be viewed as members of the D1 subfamily. In parallel, the cloned D2, D3, and D4 subtypes belong to the D2 subfamily. The pharmacologically characterized D1 and D2 receptors may involve different members of these two subfamilies. In functional studies, such as those reviewed here, the relative lack of selective compounds necessitates the continued use of the conservative D1/D2 classification, where D1 and D2 refer to the entire subfamily and not the cloned subtype. The only exception is the section on expression systems, where genetically characterized subtypes have been studied in isolation. Still, the expanded knowledge of dopamine receptor structures calls for a re-evaluation of previous concepts and an enhanced understanding of the five (or more) subtypes, which will stimulate the development of even more selective pharmacological tools and clinically useful drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kebabian, J. W. and Calne, D. B. (1979) Multiple receptors for dopamine. Nature 277, 93–96.

    Article  PubMed  CAS  Google Scholar 

  2. Stoof, J. C. and Kebabian, J. W. (1984) Two dopamine receptors: biochemistry, physiology and pharmacology. Life Sci. 35, 2281–2296.

    Article  PubMed  CAS  Google Scholar 

  3. Civelli, O., Bunzow, J. R., and Grandy, D. K. (1993) Molecular diversity of the dopamine receptors. Annu. Rev. Pharmacol. Toxicol. 32, 281–307.

    Article  Google Scholar 

  4. Gingrich, J. A. and Caron, M. G. (1993) Recent advances in the molecular biology of dopamine receptors. Annu. Rev. Neurosci. 16, 299–321.

    Article  PubMed  CAS  Google Scholar 

  5. Johnson, S. W. and North, R. A. (1992) Opioids excite dopamine neurons by hyperpolarization of local interneurons. J. Neurosci. 12, 483–488.

    PubMed  CAS  Google Scholar 

  6. Madison, D. V. and Nicoll, R. A. (1988) Enkephalin hyperpolarizes interneurones in the rat hippocampus. J. Physiol. (Lond.) 398, 123–130.

    CAS  Google Scholar 

  7. York, D. H. (1979) The neurophysiology of dopamine receptors, in The Neurobiology ofDopamine ( Horn, A. S., Korf, J., and Westerink, B. H. C., eds.), Academic, London, pp. 395–415.

    Google Scholar 

  8. Moore, R. Y. and Bloom, F. E. (1978) Central catecholamine neuron systems: anatomy and physiology of the dopamine systems. Annu. Rev. Neurosci. 1, 129–169.

    Article  PubMed  CAS  Google Scholar 

  9. Llinas, R. R. (1988) The intrinsic electrophysiological properties of mammalian neurons: insights into nervous system function. Science 242, 1654–1664.

    Article  PubMed  CAS  Google Scholar 

  10. Nicoll, R. A. (1982) Neurotransmitters can say more than just “yes” or “no.” Trends Neurosci. 5, 369–374.

    Article  CAS  Google Scholar 

  11. Nicoll, R. A., Malenka, R. C., and Kauer, J. A. (1990) Functional comparison of neurotransmitter receptor subtypes in mammalian central nervous system. Physiol. Rev. 70, 513–565.

    PubMed  CAS  Google Scholar 

  12. Sakmann, B. (1992) Elementary steps in synaptic transmission revealed by currents through single ion channels. Science 256, 503–512.

    Article  PubMed  CAS  Google Scholar 

  13. Lévesque, D., Diaz, J., Pilon, C., Martres, M.-P., Giros, B., Souil, E., et al. (1992) Identification, characterization, and localization of the dopamine D3 receptor in rat brain using 7-(3H)hydroxy-N,N-di-n-propyl-2-aminotetralin. Proc. Natl. Acad. Sci. USA 89, 8155–8159.

    Article  PubMed  Google Scholar 

  14. Chio, C. L., Lajiness, M. E., and Huff, R. M. (1994) Activation of heterologously expressed D3 dopamine receptors: comparison with D2 dopamine receptors. Mol. Pharmacol. 45, 51–60.

    PubMed  CAS  Google Scholar 

  15. Vallar, L., Muca, C., Magni, M., Albert, P. Bunzow, J., Meldolesi, J., and Civelli, O. (1990) Differential coupling of dopaminergic D2 receptors expressed in different cell types. J. Biol. Chem. 265 10,320–10,326.

    Google Scholar 

  16. Di Marzo, V., Vial, D., Sokoloff, P., Schwartz, J.-C., and Piomelli, D. (1993) Selection of alternative G.-mediated signaling pathways at the dopamine D2 receptor by protein kinase C. J. Neurosci. 13, 4846–4853.

    Google Scholar 

  17. Seabrook, G. R., Patel, S., Marwood, R., Emms, F., Knowles, M. R., Freedman, S. B., and McAllister, G. (1992) Stable expression of human D3 dopamine receptors in GH4C1 pituitary cells. FEBSLett. 312, 123–126.

    Article  CAS  Google Scholar 

  18. Liu, Y. F., Civelli, O., Zhou, Q.-Y., and Albert, P.R. (1992) Cholera toxin-sensitive 3’,5’-cyclic adenosine monophosphate and calcium signals of the human dopamine-DI receptor: selective potentiation by protein kinase A. Mol. Endocrinol. 6, 1815–1824.

    Article  PubMed  CAS  Google Scholar 

  19. Reuter, H. (1983) Calcium channel modulation by neurotransmitters, enzymes and drugs. Nature 301, 569–574.

    Article  PubMed  CAS  Google Scholar 

  20. Gray, R. and Johnston, D. (1987) Noradrenaline and ß-adrenoceptor agonists increase activity of voltage-dependent calcium channels in hippocampal neurons. Nature 327, 620–622.

    Article  PubMed  CAS  Google Scholar 

  21. Einhorn, L. C., Falardeau, P. Caron, M., Civelli, O., and Oxford, G. S. (1990) Both isoforms of the D2 dopamine receptor couple to a G protein-activated K` channel when expressed in GH4 cells. Soc. Neurosci. Abstr. 16 382(Abstract)

    Google Scholar 

  22. Castellano, M. A., Liu, L.-X., Monsma, F. J., Jr., Sibley, D. R., Kapatos, G., and Chiodo, L. A. (1993) Transfected D2 short dopamine receptors inhibit voltage-dependent potassium current in neuroblastoma x glioma hybrid (NG 108–15) cells. Mol. Pharmacol. 44, 649–656.

    Google Scholar 

  23. Seabrook, G. R., McAllister, G., Knowles, M. R., Myers, J., Sinclair, H., Patel, S., Freedman, S. B., and Kemp, J. A. (1994) Depression of high-threshold calcium currents by activation of human D2 (short) dopamine receptors expressed in differentiated NG108–15 cells. Br. J. Pharmacol. 111, 1061–1066.

    Article  PubMed  CAS  Google Scholar 

  24. Seabrook, G. R., Knowles, M., Brown, N., Myers, J., Sinclair, H., Patel, S., Freedman, S. B., and McAllister, G. (1994) Pharmacology of high-threshold calcium currents in GH4C1 pituitary cells and their regulation by activation of human D2 and D4 dopamine receptors. Br. J. Pharmacol. 112, 728–734.

    Google Scholar 

  25. Freedman, S. B., Patel, S., Marwood, R., Emms, F., Seabrook, G. R., Knowles, M. R., and McAllister, G. (1994) Expression and pharmacological characterization of the human D-3 dopamine receptor. J. Pharmacol. Exp. Ther. 268, 417–426.

    PubMed  CAS  Google Scholar 

  26. Seabrook, G. R., Kemp, J. A., Freedman, S. B., Patel, S., Sinclair, H. A., and McAllister, G. (1994) Functional expression of human D3 dopamine receptors in differentiated neuroblastoma x glioma NG108–15 cells. Br. J. Pharmacol. 111, 391–393.

    Article  PubMed  CAS  Google Scholar 

  27. Ascher, P. (1972) Inhibitory and excitatory effects of dopamine on Aplysia neurones. J. Physiol. (Lond.) 225, 173–209.

    CAS  Google Scholar 

  28. Ascher, P. and Chesnoy-Marchais, D. (1982) Interactions between three slow potassium responses controlled by three distinct receptors in Aplysïa neurones. J. Physiol. (Lond.) 324, 67–92.

    CAS  Google Scholar 

  29. Gruol, D. L. and Weinreich, D. (1979) Two pharmacologically distinct histamine receptors mediating membrane hyperpolarization on identified neurons ofAplysia californica. Brain Res. 162, 281–301.

    Article  CAS  Google Scholar 

  30. Sasaki, K. and Sato, M. (1987) A single GTP-binding protein regulates K’-channels coupled with dopamine, histamine and acetylcholine receptors. Nature 325, 259–262.

    Article  PubMed  CAS  Google Scholar 

  31. Lotshaw, D. P. and Levitan, I. B. (1988) Reciprocal modulation of calcium current by serotonin and dopamine in the identified Aplysia neuron R15. Brain Res. 439, 64–76.

    Article  PubMed  CAS  Google Scholar 

  32. Akopyan, A. R., Chemeris, N. K., and Iljin, V. I. (1985) Neurotransmitter-induced modulation of neuronal Ca current is not mediated by intracellular Ca“ or cAMP. Brain Res. 326, 145–148.

    Article  PubMed  CAS  Google Scholar 

  33. Stoof, J. C., De Vlieger, T. A., and Lodder, J. C. (1984) Opposing roles for D-1 and D-2 dopamine receptors in regulating the excitability of growth hormone-producing cells in the snail Lymnaea stagnalis. Eur. J. Pharmacol. 106, 431–435.

    Article  CAS  Google Scholar 

  34. De Vlieger, T. A., Lodder, J. C., Stoof, J. C., and Werkman, T. R. (1986) Dopamine receptor stimulation induces a potassium dependent hyperpolarizing response in growth hormone producing neuroendocrine cells of the gastropod mollusc Lymnaea stagnalis. Comp. Biochem. Physiol. 83C, 429–433.

    Google Scholar 

  35. Werkman, T. R., Lodder, J. C., De Vlieger, T. A., and Stoof, J. C. (1987) Further pharmacological characterization of a D-2-like dopamine receptor on growth hormone producing cells in Lymnaea stagnalis. Eur. J. Pharmacol. 139, 155–161.

    Article  CAS  Google Scholar 

  36. Bolshakov, V. Y., Gapon, S. A., Katchman, A. N., and Magaznik, L. G. (1993) Activation of a common potassium channel in molluscan neurones by glutamate, dopamine and muscarinic agonist. J. Physiol. (Lond.) 468, 11–33.

    CAS  Google Scholar 

  37. Deterre, P., Paupardin-Tritsch, D., Bockaert, J., and Gerschenfeld, H. M. (1982) cAMP-mediated decrease in K+ conductance evoked by serotonin and dopamine in the same neuron: a biochemical and physiological single-cell study. Proc. Natl. Acad. Sci. USA 79, 7934–7938.

    Google Scholar 

  38. Paupardin-Tritsch, D., Colombaioni, L. Deterre, P., and Gerschenfeld, H. M. (1985) Two different mechanisms of calcium spike modulation by dopamine J. Neurosci. 5 2522–2532.

    Google Scholar 

  39. Kandel, E. R. (1985) Cellular mechanisms of learning and the biological basis of individuality, in Principles ofNeural Science, 2nd ed. (Kandel, E. R. and Schwartz, J. H., eds.), Elsevier, New York, pp. 816–833.

    Google Scholar 

  40. Harris-Warrick, R. M., Hammond, C., Paupardin-Tritsch, D., Homburger, V., Rouot, B., Bockaert, J., and Gerschenfeld, H. M. (1988) An a40 subunit of a GTP-binding protein immunologically related to Go mediates a dopamine-induced decrease of Ca“ current in snail neurons. Neuron 1, 27–32.

    Google Scholar 

  41. Hille, B. (1994) Modulation of ion-channel function by G-protein-coupled receptors. Trends Neurosci. 17, 531–536.

    Article  PubMed  CAS  Google Scholar 

  42. Rosenthal, W., Hescheler, J., Trautwein, W., and Schultz, G. (1988) Control of voltage-dependent Ca“ channels by G protein-coupled receptors. FASEB J. 2, 2784–2790.

    PubMed  CAS  Google Scholar 

  43. Ginsborg, B. L., House, C. R., and Silinsky, E. M. (1974) Conductance changes associated with the secretory potential in the cockroach salivary gland. J. Physiol. (Lond.) 236, 723–731.

    CAS  Google Scholar 

  44. House, C. R. and Ginsborg, B. L. (1976) Actions of a dopamine analogue and a neuroleptic at a neuroglandular synapse. Nature 261, 332–333.

    Article  PubMed  CAS  Google Scholar 

  45. Petersen, O. H. (1992) Stimulus-secretion coupling: cytoplasmic calcium signals and the control of ion channels in exocrine acinar cells. J. Physiol. (Lond.) 448, 1–51.

    CAS  Google Scholar 

  46. Ginsborg, B. L., House, C. R., and Mitchell, M. R. (1980) On the role of calcium in the electrical responses of cockroach salivary gland to dopamine. J Physiol. (Lond.) 303, 325–335.

    CAS  Google Scholar 

  47. Johnson, B. R. and Harris-Warrick, R. M. (1990) Aminergic modulation of graded synaptic transmission in the lobster stomatogastric ganglion. J. Neurosci. 10, 2066–2076.

    PubMed  CAS  Google Scholar 

  48. Harris-Warrick, R. M., Coniglio, L. M., Barazangi, N., Guckenheimer, J., and Gueron, S. (1995) Dopamine modulation of transient potassium current evokes phase shifts in a central pattern generator network. J Neurosci. 15, 342–358.

    PubMed  CAS  Google Scholar 

  49. Rogawski, M. A. (1985) The A-current: how ubiquitous a feature of excitable cells is it? Trends Neurosci. 8, 214–219.

    Article  Google Scholar 

  50. Brown, D. A. and Caulfield, M. P. (1979) Hyperpolarizing “a2”-adrenoceptors in rat sympathetic ganglia. Br. J. Pharmacol. 65, 435–445.

    Article  PubMed  CAS  Google Scholar 

  51. Cole, A. E. and Shinnick-Gallagher, P. (1981) Comparison of the receptors mediating the catecholamine hyperpolarization and slow inhibitory postsynaptic potential in sympathetic ganglia. J. Pharmacol. Exp. Ther. 217, 440–444.

    PubMed  CAS  Google Scholar 

  52. Dun, N. and Nishi, S. (1974) Effects of dopamine on the superior cervical ganglion of the rabbit. J. Physiol. (Lond.) 239, 155–164.

    Google Scholar 

  53. Willems, J. L., Buylaert, W. A., Lefebvre, R. A., and Bogaert, M. G. (1985) Neuronal dopamine receptors on autonomic ganglia and sympathetic nerves and dopamine receptors in the gastrointestinal system. Pharmacol. Rev. 37, 165–216.

    PubMed  CAS  Google Scholar 

  54. Marchetti, C., Carbone, E., and Lux, H. D. (1986) Effects of dopamine and noradrenaline on Ca channels of cultured sensory and sympathetic neurons of chick. Pflugers Arch. 406, 104–111.

    Article  PubMed  CAS  Google Scholar 

  55. Benot, A. R. and Lopez-Barneo, J. (1990) Feedback inhibition of Caz+ currents by dopamine in glomus cells of the carotid body. Eur. J. Neurosci. 2, 809–812.

    Article  PubMed  Google Scholar 

  56. Bigornia, L., Allen, C. N., Jan, C.-R., Lyon, R. A., Titeler, M., and Schneider, A. S. (1990) Dz dopamine receptors modulate calcium channel currents and catecholamine secretion in bovine adrenal chromaffin cells. J. Pharmacol. Exp. Ther. 252, 586–592.

    PubMed  CAS  Google Scholar 

  57. Sontag, J.-M., Sanderson, P., Klepper, M., Aunis, D., Takeda, K., and Bader, M.-F. (1990) Modulation of secretion by dopamine involves decreases in calcium and nicotinic currents in bovine chromaffin cells. J. Physiol. (Lond.) 427, 495–517.

    CAS  Google Scholar 

  58. Artalejo, C. R., Ariano, M. A., Perlman, R. L., and Fox, A. P. (1990) Activation of facilitation calcium channels in chromaffin cells by D1 dopamine receptors through a cAMP/protein kinase A-dependent mechanism. Nature 348, 239–242.

    Article  PubMed  CAS  Google Scholar 

  59. Twitchell, W. A. and Rane, S. G. (1994) Nucleotide-independent modulation of Caz+-dependent K’ channel current by a µ-type opioid receptor. Mol. Pharmacol. 46, 793–798.

    PubMed  CAS  Google Scholar 

  60. Inoue, K., Nakazawa, K., Watano, T., Ohara-Imaizumi, M., Fujimori, K., and Takanaka, A. (1992) Dopamine receptor agonists and antagonists enhance ATP-activated currents. Eur. J. Pharmacol. 215, 321–324.

    Article  PubMed  CAS  Google Scholar 

  61. Nakazawa, K., Watano, T., and Inoue, K. (1993) Mechanisms underlying facilitation by dopamine of ATP-activated currents in rat pheochromocytoma cells. Pflugers Arch. 422, 458–464.

    Article  PubMed  CAS  Google Scholar 

  62. Björklund, A. and Lindvall, O. (1984) Dopamine-containing systems in the CNS, in Handbook of Chemical Neuroanatomy, vol. 2 (Björklund, A. and Hökfelt, T., eds.), Elsevier, Amsterdam, pp. 55–122.

    Google Scholar 

  63. Einhorn, L. C., Gregerson, K. A., and Oxford, G. S. (1991) D2 dopamine receptor activation of potassium channels in identified rat lactotrophs: whole-cell and single-channel recording. J. Neurosci. 11, 3727–3737.

    PubMed  CAS  Google Scholar 

  64. Israel, J. M., Kirk, C., and Vincent, J. D. (1987) Electrophysiological responses to dopamine of rat hypophysial cells in lactotroph-enriched primary cultures. J. Physiol. (Lond.) 390, 1–22.

    CAS  Google Scholar 

  65. Einhorn, L. C. and Oxford, G. S. (1993) Guanine nucleotide binding proteins mediate D2 dopamine receptor activation of a potassium channel in rat lactotrophs. J. Physiol. (Lond.) 462, 563–578.

    CAS  Google Scholar 

  66. Lledo, P. M., Homburger, V., Bockaert, J., and Vincent, J.-D. (1992) Differential G protein-mediated coupling of D-2 dopamine receptors to K’ and Cat+ currents in rat anterior pituitary cells. Neuron 8, 455–463.

    Article  PubMed  CAS  Google Scholar 

  67. Lledo, P.-M., Legendre, P., Zhang, J., Israel, J.-M., and Vincent, J.-D. (1990) Effects of dopamine on voltage-dependent potassium currents in identified rat lactotroph cells. Neuroendocrinology 52, 545–555.

    Article  PubMed  CAS  Google Scholar 

  68. Login, I. S., Pancrazio, J. J., and Kim, Y. I. (1990) Dopamine enhances a voltage-dependent transient K’ current in the MMQ cell, a clonal pituitary line expressing functional D2 dopamine receptors. Brain Res. 506, 331–334.

    Article  PubMed  CAS  Google Scholar 

  69. Lledo, P.-M., Legendre, P., Israel, J.-M., and Vincent, J.-D. (1990) Dopamine inhibits two characterized voltage-dependent calcium currents in identified rat lactotroph cells. Endocrinology 127, 990–1001.

    Article  PubMed  CAS  Google Scholar 

  70. Lledo, P.-M., Israel, J.-M., and Vincent, J.-D. (1990) A guanine nucleotide protein mediates the inhibition of voltage-dependent calcium currents by dopamine in rat lactotrophs. Brain Res. 528, 143–147.

    Article  PubMed  CAS  Google Scholar 

  71. Lledo, P.-M., Israel, J. M., and Vincent, J.-D. (1991) Chronic stimulation of D2 dopamine receptors specifically inhibits calcium but not potassium currents in rat lactotrophs. Brain Res. 558, 231–238.

    Article  PubMed  CAS  Google Scholar 

  72. Williams, P. J., MacVicar, B. A., and Pittman, Q. J. (1989) A dopaminergic inhibitory postsynaptic potential mediated by an increased potassium conductance. Neuroscience 31, 673–681.

    Article  PubMed  CAS  Google Scholar 

  73. Keja, J. A., Stoof, J. C., and Kits, K. S. (1992) Dopamine D2 receptor stimulation differentially affects voltage-activated calcium channels in rat pituitary melanotropic cells. J. Physiol. (Lond.) 450, 409–435.

    CAS  Google Scholar 

  74. Stack, J. and Surprenant, A. (1991) Dopamine actions on calcium currents, potassium currents and hormone release in rat melanotrophs. J. Physiol. (Lond.) 439, 37–58.

    CAS  Google Scholar 

  75. Williams, P. J., MacVicar, B. A., and Pittman, Q. J. (1990) Synaptic modulation by dopamine of calcium currents in rat pars intermedia. J. Neurosci. 10, 757–763.

    PubMed  CAS  Google Scholar 

  76. Nussinovitch, I. and Kleinhaus, A. L. (1992) Dopamine inhibits voltage-activated calcium channel currents in rat pars intermedia pituitary cells. Brain Res. 574, 49–55.

    Article  PubMed  CAS  Google Scholar 

  77. Valentijn, J. A., Louiset, E., Vaudry, H., and Cazin, L. (1991) Dopamine-induced inhibition of action potentials in cultured frog pituitary melanotrophs is mediated through activation of potassium channels and inhibition of calcium and sodium channels. Neuroscience 42, 29–39.

    Article  PubMed  CAS  Google Scholar 

  78. Valentijn, J. A., Louiset, E., Vaudry, H., and Cazin, L. (1991) Dopamine regulates the electrical activity of frog melanotrophs through a G protein-mediated mechanism. Neuroscience 44, 85–95.

    Article  PubMed  CAS  Google Scholar 

  79. Mudrick-Donnon, L. A., Williams, P. J., Pittman, Q. J., and MacVicar, B. A. (1993) Postsynaptic potentials mediated by GABA and dopamine evoked in stellate glial cells of the pituitary pars intermedia. J. Neurosci. 13 4660–4668.

    Google Scholar 

  80. Dowling, J. E. (1991) Retinal neuromodulation: the role of dopamine. Vis. Neurosci. 7, 87–97.

    Article  PubMed  CAS  Google Scholar 

  81. McMahon, D. G., Knapp, A. G., and Dowling, J. E. (1989) Horizontal cell gap junctions: single-channel conductance and modulation by dopamine. Proc. Natl. Acad. Sci. USA 86, 7639–7643.

    Article  PubMed  CAS  Google Scholar 

  82. DeVries, S. H. and Schwartz, E. A. (1992) Hemi-gap-junction channels in solitary horizontal cells of the catfish retina. J. Physiol. (Lond.) 445, 201–230.

    CAS  Google Scholar 

  83. Harsanyi, K. and Mangel, S. C. (1992) Activation of a D2 receptor increases electrical coupling between retinal horizontal cells by inhibiting dopamine release. Proc. Natl. Acad. Sci. USA 89, 9220–9224.

    Article  PubMed  CAS  Google Scholar 

  84. Knapp, A. G., Schmidt, K. F., and Dowling, J. E. (1990) Dopamine modulates the kinetics of ion channels gated by excitatory amino acids in retinal horizontal cells. Proc. Natl. Acad. Sci. USA 87, 767–771.

    Article  PubMed  CAS  Google Scholar 

  85. Schmidt, K.-F., Kruse, M., and Hatt, H. (1994) Dopamine alters glutamate receptor desensitization in retinal horizontal cells of the perch (Percafluviatilis). Proc. Natl. Acad. Sci. USA 91, 8288–8291.

    Article  CAS  Google Scholar 

  86. Dong, C.-J. and Werblin, F. S. (1994) Dopamine modulation of GABAc receptor function in an isolated retinal neuron. J. Neurophysiol. 71, 1258–1260.

    PubMed  CAS  Google Scholar 

  87. Liu, Y. and Lasater, E. M. (1994) Calcium currents in turtle retinal ganglion cells. II. Dopamine modulation via a cyclic AMP-dependent mechanism. J. Neurophysiol. 71, 743–752.

    PubMed  CAS  Google Scholar 

  88. Schotland, J., Shupliakov, O., Wikström, M., Brodin, L., Srinivasan, M., You, Z.-B., Herrera-Marschitz, M., Zhang, W., Hökfelt, T., and Griliner, S. (1995) Control of lamprey locomotor neurons by colocalized monoamine transmitters. Nature 374, 266–268.

    Article  PubMed  CAS  Google Scholar 

  89. Pereda, A., Triller, A., Korn, H., and Faber, D. S. (1992) Dopamine enhances both electrotonic coupling and chemical excitatory postsynaptic potentials at mixed synapses. Proc. Natl. Acad. Sci. USA 89, 12,088–12, 092.

    Google Scholar 

  90. Yang, C. R., Bourque, C. W., and Renaud, L. P. (1991) Dopamine D2 receptor activation depolarizes rat supraoptic neurones in hypothalamic explants. J. Physiol. (Lond.) 443, 405–419.

    CAS  Google Scholar 

  91. Partridge, L. D. and Swandulla, D. (1988) Calcium-activated non-specific cation channels. Trends Neurosci. 11, 69–72.

    Article  PubMed  CAS  Google Scholar 

  92. Aghajanian, G. K. and Bunney, B. S. (1973) Central dopaminergic neurons: neurophysiological identification and responses to drugs, in Frontiers in Catecholamine Research ( Usdin, E. and Snyder, S. H., eds.), Pergamon, New York, pp. 643–648.

    Google Scholar 

  93. White, F. J. and Wang, R. Y. (1984) Pharmacological characterization of dopamine autoreceptors in the rat ventral tegmental area: microiontophoretic studies. J. Pharmacol. Exp. Ther. 231, 275–280.

    PubMed  CAS  Google Scholar 

  94. Innis, R. B. and Aghajanian, G. K. (1987) Pertussis toxin blocks autoreceptormediated inhibition of dopaminergic neurons in rat substantia nigra. Brain Res. 411, 139–143.

    Article  PubMed  CAS  Google Scholar 

  95. Lacey, M. G., Mercuri, N. B., and North, R. A. (1987) Dopamine acts on D-2 receptors to increase potassium conductance in neurones of the rat substantia nigra zona compacta. J. Physiol. (Lond.) 392, 397–416.

    CAS  Google Scholar 

  96. Lacey, M. G., Mercuri, N. B., and North, R. A. (1988) On the potassium conductance increase activated by GABA-B and dopamine D-2 receptors in rat substantia nigra neurones. J. Physiol. (Lond.) 401, 437–453.

    CAS  Google Scholar 

  97. Johnson, S. W. and North, R. A. (1992) Two types of neurone in the rat ventral tegmental area and their synaptic inputs. J. Physiol. (Lond.) 450, 455–468.

    CAS  Google Scholar 

  98. Roeper, J., Hainsworth, A. H., and Ashcroft, F. M. (1990) Tolbutamide reverses membrane hyperpolarisation induced by activation of D2 receptors and GABAB receptors in isolated substantia nigra neurones. Pflugers Arch. 416, 473–475.

    Article  PubMed  CAS  Google Scholar 

  99. Hicks, G. A. and Henderson, G. (1992) Lack of evidence for coupling of the dopamine D2 receptor to an adenosine triphosphate-sensitive potassium (ATP-K’) channel in dopaminergic neurones of the rat substantia nigra. Neurosci. Lett. 141, 213–217.

    Article  PubMed  CAS  Google Scholar 

  100. Lejeune, F. and Millan, M. J. (1995) Activation of dopamine D3 autoreceptors inhibits firing of ventral tegmental dopaminergic neurones in vivo. Eur. J. Pharmacol. 275, R7 R9.

    Google Scholar 

  101. Millan, M. J., Audinot, V., Rivet, J.-M., Gobert, A., Vian, J., Prost, J.-F., Spedding, M., and Peglion, J.-L. (1994) S 14297, a selective ligand at cloned human dopamine D3 receptors, blocks 7-OH-DPAT-induced hypothermia in rats. Eur. J. Pharmacol. 260, R3 — R5.

    Article  PubMed  CAS  Google Scholar 

  102. Kreiss, D. S., Bergstrom, D. A., Gonzalez, A. M., Huang, K.-X., Sibley, D. R., and Walters, J. R. (1995) Dopamine receptor agonist potencies for inhibition of cell firing correlate with dopamine D3 receptor binding affinities. Eur. J. Pharmacol. 277, 209–214.

    Article  PubMed  CAS  Google Scholar 

  103. Colquhoun, D. (1987) Affinity, efficacy, and receptor classification: is the classical theory still useful?, in Perspectives on Receptor Classification ( Black J. W., Jenkinson D. H., and Gerskowitch V. P., eds.), Liss, New York, pp. 103–114.

    Google Scholar 

  104. Bowery, B., Rothwell, L. A., and Seabrook, G. R. (1994) Comparison between the pharmacology of dopamine receptors mediating the inhibition of cell firing in rat brain slices through the substantia nigra pars compacta and ventral tegmental area. Br. J. Pharmacol. 112, 873–880.

    Article  PubMed  CAS  Google Scholar 

  105. Liu, L., Shen, R.-Y., Kapatos, G., and Chiodo, L. A. (1994) Dopamine neuron membrane physiology: characterization of the transient outward current (IA) and demonstration of a common signal transduction pathway for IA and IK. Synapse 17, 230–240.

    Article  PubMed  CAS  Google Scholar 

  106. Jiang, Z.-G., Pessia, M., and North, R. A. (1993) Dopamine and baclofen inhibit the hyperpolarization-activated cation current in rat ventral tegmental neurones. J. Physiol. (Lond.) 462, 753–764.

    CAS  Google Scholar 

  107. Cameron, D. L. and Williams, J. T. (1993) Dopamine D l receptors facilitate transmitter release. Nature 366, 344–347.

    Article  PubMed  CAS  Google Scholar 

  108. Kitai, S. T., Sugimori, M., and Kocsis, J. D. (1976) Excitatory nature of dopamine in the nigro-caudate pathway. Exp. Brain Res. 24, 351–363.

    PubMed  CAS  Google Scholar 

  109. Bernardi, G., Marciani, M. G., Morocutti, C., Pavone, F., and Stanzione, P. (1978) The action of dopamine on rat caudate neurones intracellularly recorded. Neurosci. Lett. 8, 235–240.

    Article  PubMed  CAS  Google Scholar 

  110. Herrling, P. L. and Hull, C. D. (1980) Iontophoretically applied dopamine depolarizes and hyperpolarizes the membrane of cat caudate neurons. Brain Res. 192, 441–462.

    Article  PubMed  CAS  Google Scholar 

  111. Calabresi, P., Mercuri, N., Stanzione, P., Stefani, A., and Bernardi, G. (1987) Intracellular studies on the dopamine-induced firing inhibition of neostriatal neurons in vitro: evidence for D1 receptor involvement. Neuroscience 20, 757–771.

    Article  PubMed  CAS  Google Scholar 

  112. Calabresi, P., Mercuri, N. B., Sancesario, G., and Bernardi, G. (1993) Electrophysiology of dopamine-denervated striatal neurons. Brain 116, 433–452.

    Article  PubMed  Google Scholar 

  113. Calabresi, P., Benedetti, M., Mercuri, N. B., and Bernardi, G. (1988) Endogenous dopamine and dopaminergic agonists modulate synaptic excitation in neostriatum: intracellular studies from naive and catecholamine-depleted rats. Neuroscience 27, 145–157.

    Article  PubMed  CAS  Google Scholar 

  114. Akaike, A., Ohno, Y., Sasa, M., and Takaori, S. (1987) Excitatory and inhibitory effects of dopamine on neuronal activity of the caudate nucleus neurons in vitro. Brain Res. 418, 262–272.

    Article  PubMed  CAS  Google Scholar 

  115. Surmeier, D. J., Eberwine, J., Wilson, C. J., Cao, Y., Stefani, A., and Kitai, S. T. (1992) Dopamine receptor subtypes colocalize in rat striatonigral neurons. Proc. Natl. Acad. Sci. USA 89, 10,178–10, 182.

    Google Scholar 

  116. Li, M., West, J. W., Lai, Y., Scheuer, T., and Catterall, W. A. (1992) Functional modulation of brain sodium channels by cAMP-dependent phosphorylation. Neuron 8, 1151–1159.

    Article  PubMed  CAS  Google Scholar 

  117. Surmeier, D. J., Bargas, J., Hemmings, H. C., Jr., Nairn, A. C., and Greengard, P. (1995) Modulation of calcium currents by a D, dopaminergic protein kinase/phosphatase cascade in rat neostriatal neurons. Neuron 14, 385–397.

    Article  PubMed  CAS  Google Scholar 

  118. Calabresi, P., Benedetti, M., Mercuri, N. B., and Bernardi, G. (1988) Depletion of catecholamines reveals inhibitory effects of bromocriptine and lysuride on neostriatal neurones recorded intracellularly in vitro. Neuropharmacology 27, 579–587.

    Article  PubMed  CAS  Google Scholar 

  119. Coirini, H., Schumacher, M., Angulo, J. A., and McEwen, B. S. (1990) Increase in striatal dopamine D, receptor mRNA after lesions or haloperidol treatment. Eur. J. Pharmacol. 186, 369–371.

    Article  PubMed  CAS  Google Scholar 

  120. Gerfen, C. R., Engber, T. M., Mahan, L. C., Susel, Z., Chase, T. N., Monsma, F. J., Jr., and Sibley, D. R. (1990) D, and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science 250, 1429–1432.

    Article  PubMed  CAS  Google Scholar 

  121. Le Moine, C., Normand, E., Guitteny, A. F., Fougue, B., Teoule, R., and Bloch, B. (1990) Dopamine receptor gene expression by enkephalin neurons in rat forebrain. Proc. Natl. Acad. Sci. USA 87, 230–234.

    Article  PubMed  Google Scholar 

  122. Surmeier, D. J., Reiner, A., Levine, M. S., and Ariano, M. A. (1993) Are neostriatal dopamine receptors co-localized? Trends Neurosci. 16, 299–305.

    Article  PubMed  CAS  Google Scholar 

  123. Gerfen, C. R., Keefe, K. A., Bloch, B., Le Moine, C., Surmeier, D. J., Reiner, A., Levine, M. S., and Ariano, M. A. (1994) Neostriatal dopamine receptors. Trends Neurosci. 17, 2–5.

    Article  PubMed  CAS  Google Scholar 

  124. Drago, J., Gerfen, C. R., Lachowicz, J. E., Streiner, H., Hollon, T. R., Love, P. E., et al. (1994) Altered striatal function in a mutant mouse lacking DIA dopamine receptors. Proc. Natl. Acad. Sci. USA 91, 12,564–12, 568.

    Google Scholar 

  125. Freedman, J. E. and Weight, F. F. (1988) Single K* channels activated by D2 dopamine receptors in acutely dissociated neurons from rat corpus striatum. Proc. Natl. Acad. Sci. USA 85, 3618–3622.

    Article  PubMed  CAS  Google Scholar 

  126. Freedman, J. E. and Weight, F. F. (1989) Quinine potently blocks single K* channels activated by dopamine D-2 receptors in rat corpus striatum neurons. Eur. J. Pharmacol. 164, 341–346.

    Article  PubMed  CAS  Google Scholar 

  127. Lin, Y.-J., Greif, G. J., and Freedman, J. E. (1993) Multiple sulfonylurea-sensitive potassium channels: a novel subtype modulated by dopamine. Mol. Pharmacol. 44, 907–910.

    PubMed  CAS  Google Scholar 

  128. Kitai, S. T. and Surmeier, D. J. (1993) Cholinergic and dopaminergic modulation of potassium conductances in neostriatal neurons, in Advances in Neurology, Vol. 60: Parkinson’s Disease: From Basic Research to Treatment ( Narabayashi, H., Nagatsu, T., Yanagisawa, N., and Mizuno, Y., eds.), Raven, New York, pp. 40–52.

    Google Scholar 

  129. Storm, J. F. (1990) Potassium currents in hippocampal pyramidal cells, in Understanding the Brain Through the Hippocampus (Storm-Mathisen, J., Zimmer, J., and Ottersen, O. P., eds.), Elsevier, Amsterdam, pp. 161–187.

    Google Scholar 

  130. Rutherford, A., Garcia-Munoz, M., and Arbuthnott, G. W. (1988) An afterhyperpolarization recorded in striatal cells “in vitro”: effect of dopamine administration. Exp. Brain Res. 71, 399–405.

    Article  PubMed  CAS  Google Scholar 

  131. Cepeda, C., Buchwald, N. A., and Levine, M. S. (1993) Neuromodulatory actions of dopamine in the neostriatum are dependent upon the excitatory amino acid receptor subtypes activated. Proc. Natl. Acad. Sci. USA 90, 9576–9580.

    Article  PubMed  CAS  Google Scholar 

  132. Calabresi, P., De Murtas, M., Mercuri, N. B., and Bernardi, G. (1992) Chronic neuroleptic treatment: D2 dopamine receptor supersensitivity and striatal glutamatergic transmission. Ann. Neurol. 31, 366–373.

    Article  PubMed  CAS  Google Scholar 

  133. Bliss, T. V. P. and Collingridge, G. L. (1993) A synaptic model for memory: long-term potentiation in the hippocampus. Nature 361, 31–39.

    Article  PubMed  CAS  Google Scholar 

  134. Linden, D. J. (1994) Long-term synaptic depression in the mammalian brain. Neuron 12, 457–472.

    Article  PubMed  CAS  Google Scholar 

  135. Calabresi, P., Pisani, A., Mercuri, N. B., and Bernardi, G. (1992) Long-term potentiation in the striatum is unmasked by removing the voltage-dependent magnesium block of NMDA receptor channels. Eur. J. Neurosci. 4, 929–935.

    Article  PubMed  Google Scholar 

  136. Calabresi, P., Maj, R., Mercuri, N. B., and Bernardi, G. (1992) Coactivation of DI and D2 dopamine receptors is required for long-term synaptic depression in the striatum. Neurosci. Lett. 142, 95–99.

    Article  PubMed  CAS  Google Scholar 

  137. Aosaki, T., Graybiel, A. M., and Kimura, M. (1994) Effect of the nigrostriatal dopamine system on acquired neural responses in the striatum of behaving monkeys. Science 265, 412–415.

    Article  PubMed  CAS  Google Scholar 

  138. Cepeda, C., Walsh, J. P., Hull, C. D., Howard, S. G., Buchwald, N. A., and Levine, M. S. (1989) Dye-coupling in the neostriatum of the rat: I. Modulation by dopamine-depleting lesions. Synapse 4, 229–237.

    Article  PubMed  CAS  Google Scholar 

  139. Heimer, L., Switzer, R. D., and Van Hoesen, G. W. (1982) Ventral striatum and ventral pallidum components of the motor system? Trends Neurosci. 5, 83–87.

    Google Scholar 

  140. Uchimura, N., Higashi, H., and Nishi, S. (1986) Hyperpolarizing and depolarizing actions of dopamine via D-1 and D-2 receptors on nucleus accumbens neurons. Brain Res. 375, 368–372.

    Article  PubMed  CAS  Google Scholar 

  141. Higashi, H., Inanaga, K., Nishi, S., and Uchimura, N. (1989) Enhancement of dopamine actions on rat nucleus accumbens neurones in vitro after methamphetamine pre-treatment. J. Physiol. (Lond.) 408, 587–603.

    CAS  Google Scholar 

  142. Uchimura, N. and North, R. A. (1990) Actions of cocaine on rat nucleus accumbens neurones in vitro. Br. J. Pharmacol. 99, 736–740.

    Article  CAS  Google Scholar 

  143. Pennartz, C. M. A., Dolleman-Van der Weel, M. J., Kitai, S. T., and Lopes da Silva, F. H. (1992) Presynaptic dopamine D1 receptors attenuate excitatory and inhibitory limbic inputs to the shell region of the rat nucleus accumbens studied in vitro. J. Neurophysiol. 67, 1325–1334.

    CAS  Google Scholar 

  144. Heimer, L. and Alheid, G. F. (1991) Piecing together the puzzle of basal forebrain anatomy, in The Basal Forebrain ( Napier, T. C., Kalivas, P. W., andHanin, I., eds.), Plenum, New York, pp. 1–42.

    Chapter  Google Scholar 

  145. Pennartz, C. M. A., Dolleman-Van der Weel, M., and Lopes da Silva, F. H. (1992) Differential membrane properties and dopamine effects in the shell and core of the rat nucleus accumbens studied in vitro. Neurosci. Lett. 136, 109–112.

    CAS  Google Scholar 

  146. O’Donnell, P. and Grace, A. A. (1994) Tonic D2-mediated attenuation of cortical excitation in nucleus accumbens neurons recorded in vitro. Brain Res. 634, 105–112.

    Article  PubMed  Google Scholar 

  147. O’Donnell, P. and Grace, A. A. (1993) Dopaminergic modulation of dye coupling between neurons in the core and shell regions of the nucleus accumbens. J. Neurosci. 13, 3456–3471.

    PubMed  Google Scholar 

  148. Benardo, L. S. and Prince, D. A. (1982) Dopamine modulates a Cat+-activated potassium conductance in mammalian hippocampal pyramidal cells. Nature 297, 76–79.

    Article  PubMed  CAS  Google Scholar 

  149. Benardo, L. S. and Prince, D. A. (1982) Dopamine action on hippocampal pyramidal cells. J. Neurosci. 2, 415–423.

    PubMed  CAS  Google Scholar 

  150. Malenka, R. C. and Nicoll, R. A. (1986) Dopamine decreases the calcium-activated afterhyperpolarization in hippocampal CA1 pyramidal cells. Brain Res. 379, 210–215.

    Article  PubMed  CAS  Google Scholar 

  151. Stanzione, P., Calabresi, P., Mercuri, N., and Bernardi, G. (1984) Dopamine modulates CAI hippocampal neurons by elevating the threshold for spike generation: an in vitro study. Neuroscience 13, 1105–1116.

    Article  PubMed  CAS  Google Scholar 

  152. Frey, U., Huang, Y.-Y., and Kandel, E. R. (1993) Effects of cAMP simulate a late stage of LTP in hippocampal CA1 neurons. Science 260, 1661–1664.

    Article  PubMed  CAS  Google Scholar 

  153. Huang, Y.-Y. and Kandel, E. R. (1995) D1/DS receptor agonists induce a protein synthesis-dependent late potentiation in the CA1 region of the hippocampus. Proc. Natl. Acad. Sci. USA 92, 2446–2450.

    Article  PubMed  CAS  Google Scholar 

  154. Le Moal, M. and Simon, H. (1991) Mesocorticolimbic dopaminergic network: functional and regulatory roles. Physiol. Rev. 71, 155–234.

    PubMed  Google Scholar 

  155. Penit-Soria, J., Audinat, E., and Crepel, F. (1987) Excitation of rat prefrontal cortical neurons by dopamine: an in vitro electrophysiological study. Brain Res. 425, 263–274.

    Article  PubMed  CAS  Google Scholar 

  156. Gellman, R. L. and Aghajanian, G. K. (1993) Pyramidal cells in piriform cortex receive a convergence of inputs from monoamine activated GABAergic interneurons. Brain Res. 600, 63–73.

    Article  PubMed  CAS  Google Scholar 

  157. Pralong, E. and Jones, R. S. G. (1993) Interactions of dopamine with glutamate-and GABA-mediated synaptic transmission in the rat entorhinal cortex in vitro. Eur. J. Neurosci. 5, 760–767.

    Article  CAS  Google Scholar 

  158. Law-Tho, D., Hirsch, J. C., and Crepel, F. (1994) Dopamine modulation of synaptic transmission in rat prefrontal cortex: an in vitro electrophysiological study. Neurosci. Res. 21, 151–160.

    Article  PubMed  CAS  Google Scholar 

  159. Cepeda, C., Radisavljevic, Z., Peacock, W., Levine, M. S., and Buchwald, N. A. (1992) Differential modulation by dopamine of responses evoked by excitatory amino acids in human cortex. Synapse 11, 330–341.

    Article  PubMed  CAS  Google Scholar 

  160. Law-Tho, D., Desce, J. M., and Crepel, F. (1995) Dopamine favours the emergence of long-term depression versus long-term potentiation in slices of rat prefrontal cortex. Neurosci. Lett. 188, 125–128.

    Article  PubMed  CAS  Google Scholar 

  161. Sawaguchi, T. and Goldman-Rakic, P. S. (1991) D1 dopamine receptors in prefrontal cortex: involvement in working memory. Science 251, 947–950.

    Article  PubMed  CAS  Google Scholar 

  162. Chavez-Noriega, L. E. and Stevens, C. F. (1994) Increased transmitter release at excitatory synapses produced by direct activation of adenylate cyclase in rat hippocampal slices. J. Neurosci. 14, 310–317.

    PubMed  CAS  Google Scholar 

  163. Nicoll, R. A. (1988) The coupling of neurotransmitter receptors to ion channels in the brain. Science 241, 545–551.

    Article  PubMed  CAS  Google Scholar 

  164. North, R. A. (1989) Drug receptors and the inhibition of nerve cells. Br. J. Pharmacol. 98, 13–28.

    Article  PubMed  CAS  Google Scholar 

  165. North, R. A. (1992) Opioid actions on membrane ion channels, in Handbook of Experimental Pharmacology, Vol. 104/1: Opioids 1(Herz, A., Akil, H., and Simon, E. J., eds.), Springer-Verlag, Berlin, pp. 773–797.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Grenhoff, J., Johnson, S.W. (1997). Electrophysiological Effects of Dopamine Receptor Stimulation. In: Neve, K.A., Neve, R.L. (eds) The Dopamine Receptors. The Receptors. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-4757-2635-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2635-0_9

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-2637-4

  • Online ISBN: 978-1-4757-2635-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics