Skip to main content

Adrenocortical Response to Critical Illness

The Renin-Aldosterone Axis

  • Chapter
Endocrinology of Critical Disease

Part of the book series: Contemporary Endocrinology ((COE,volume 4))

  • 118 Accesses

Abstract

Maintainence of the appropriate volume of extracellular body fluid and, particularly, of that 25% of extracellular fluid that is within the vascular tree is a critical survival mechanism. The three hormones that have been identified as being most important in maintaining this volume homeostasis are aldosterone, antidiuretic hormone, and atrial natriuretic peptide (1). This chapter focuses on the first of these, aldosterone. The purpose is to review the steps in the renin—angiotensin—aldosterone (RAA) pathway, to discuss the participation of angiotensin and aldosterone in the regulation of volume status and blood pressure, and then to explore the response of the RAA axis to critical illness. It should be emphasized at the start, however, that in the conditions to be discussed, angiotensin and aldosterone usually act in concert with antidiuretic hormone and atrial natriuretic peptide, as well as with other body defense mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rolih CA, Ober KP. The endocrine response to critical illness. Med Clin North Am 1995; 79: 211–224.

    PubMed  CAS  Google Scholar 

  2. Stockigt JR. Mineralocorticoid excess. In: James VHT, ed. The Adrenal Gland. Raven, New York, 1979, pp. 197–241.

    Google Scholar 

  3. Miller WL, Tyrrell JB. The adrenal cortex. In: Felig P, Baxter JD, Frohman LA, eds. Endocrinology and Metabolism. McGraw-Hill, New York, 1995, pp. 555–711.

    Google Scholar 

  4. Baxter JD, Perloff D, Hsueh W, Biglieri EG. The endocrinology of hypertension. In: Felig P, Baxter JD, Frohman LA, eds. Endocrinology and Metabolism. McGraw-Hill, New York, 1995, pp. 749–853.

    Google Scholar 

  5. Lindop GBM, Downie TT. New morphological evidence for the synthesis and storage of renin in the human kidney: an ultrastructural immunocytochemical study. J Hypertens 1984; 2: 7–16.

    PubMed  CAS  Google Scholar 

  6. Weber PC, Siess W. Interactions of renal prostaglandins with the renin-angiotensin system. Pharm Ther 1981; 15: 321–337.

    CAS  Google Scholar 

  7. Hsueh WA, Goldstone R, Carlson EJ, Horton R. Evidence that the Beta-adrenergic system and prostaglandins stimulate renin release through different mechanisms. J Clin Endocrinol Metab 1985; 61: 399–403.

    PubMed  CAS  Google Scholar 

  8. Margolius HS. Kallikreins and kinins Molecular characteristics and cellular and tissue responses. Diabetes 1996; 45 (Suppl 1): S14 - S19.

    PubMed  Google Scholar 

  9. Hsueh WA, Baxter JD. Human prorenin. Hypertension 1991; 17: 469–479.

    CAS  Google Scholar 

  10. Campbell DJ, Kladis A, Skinner SL, Whitworth JA. Characterization of angiotensin peptides in plasma of anephric man J Hypertens 1991: 9: 265–274.

    CAS  Google Scholar 

  11. Re RN. Cellular biology of the renin-angiotensin systems. Arch Intern Med 1984: 144: 2037–2041.

    PubMed  CAS  Google Scholar 

  12. Ganong WF, Barbieri C. Neuroendocrine components in the regulation of renin secretion. In: Ganong WF, Martini L, eds. Frontiers in Neuroendocrinology. Raven, New York; 1982, pp. 231–262.

    Google Scholar 

  13. Davis JO, Freeman RH. Mechanisms regulating renin release. Physiol Rev 1976; 56: 1–56.

    PubMed  CAS  Google Scholar 

  14. Taher MS, McLain LG, McDonald KM, Schrier RW. Effect of beta adrenergic blockade on renin response to renal nerve stimulation. J Clin Invest 1976; 57: 459–465.

    PubMed  CAS  Google Scholar 

  15. Vander AJ. Inhibition of renin release in the dog by vasopressin and vasotocin. Circ Res 1968; 23: 605–609.

    PubMed  CAS  Google Scholar 

  16. Cuneo RC, Espiner EA, Nicholls MG, Yandle TG, Joyce SL, Gilchrist NL. Renal, hemodynamic, and hormonal responses to atrial natriuretic peptide infusions in normal man, and effect of sodium intake. J Clin Endocrinol Metab 1986; 63: 946–953.

    PubMed  CAS  Google Scholar 

  17. Martínez-Maldonado M, Gely R, Tapia E, Benabe JE. Role of macula densa in diuretics-induced renin release. Hypertension 1990; 16: 261–268.

    PubMed  Google Scholar 

  18. Briggs JP, Lorenz JN, Weihprecht H, Schnermann J. Macula densa control of renin secretion. Renal Physiol Biochem 1991; 14: 164–174.

    PubMed  CAS  Google Scholar 

  19. Lynch KR, Peach MJ. Molecular biology of angiotensinogen. Hypertension 1991; 17: 263–269.

    PubMed  CAS  Google Scholar 

  20. Erdös EG, Skidgel RA. The unusual substrate specificity and the distribution of human angiotensin I converting enzyme. Special Lecture. Hypertension 1986; 8 (Suppl I): I34 - I37.

    Google Scholar 

  21. Bernstein KE, Shai S-Y, Howard T, Balogh R, Frenzel K, Langford K. Structure and regulated expression of angiotensin-converting enzyme and the receptor for angiotensin H. Am J Kidney Dis 1993; 21 (Suppl 1): 53–57.

    PubMed  CAS  Google Scholar 

  22. Erdös EG. Angiotensin I converting enzyme. Circ Res 1975; 36: 247–255.

    PubMed  Google Scholar 

  23. Guthrie GP. Angiotensin receptors: physiology and pharmacology. Clin Cardiol 1995;18(Suppl III): 11I29–11134.

    Google Scholar 

  24. Campbell DJ. Circulating and tissue angiotensin systems. J Clin Invest 1987; 79: 1–6.

    PubMed  CAS  Google Scholar 

  25. Mulrow, PJ. The intrarenal renin-angiotensin system. Curr Opinion Neph Hypertens 1993; 2: 41–44.

    CAS  Google Scholar 

  26. Quinn SJ, Williams GH. Regulation of aldosterone secretion. Ann Rev Physiol 1988; 50: 409–426.

    CAS  Google Scholar 

  27. Dluhy RG, Axelrod L, Underwood RH, Williams GH. Studies of the control of plasma aldosterone concentration in normal man II Effect of dietary potassium and acute potassium infusion. J Clin Invest 1972; 51: 1950–1957.

    PubMed  CAS  Google Scholar 

  28. Himathongkam T, Dluhy RG, Williams GH. Potassium-aldosterone-renin interrelationships. J Clin Endocrinol Metab 1975; 41: 153–159.

    PubMed  CAS  Google Scholar 

  29. Fraser P, Mason PA, Buckingham JC, et al. The interaction of sodium and potassium status, of ACTH and of angiotensin II in the control of corticosteroid secretion. J Steroid Biochem 1979; 11: 1039–1042.

    PubMed  CAS  Google Scholar 

  30. Schneider EG, Radke KJ, Ulderich DA, Taylor RE Jr. Effect of osmolality on aldosterone secretion. Endocrinology 1985; 116: 1621–1626.

    PubMed  CAS  Google Scholar 

  31. Tucci JR, Espiner EA, Jagger PI, Pauk GL, Lauler DP. ACTH stimulation of aldosterone secretion in normal subjects and in patients with chronic adrenocortical insufficiency. J Clin Endocrinol Metab 1967; 27: 568–575.

    PubMed  CAS  Google Scholar 

  32. Rayfield J, Rose LI, Dluhy RG, Williams GH. Aldosterone secretory and glucocorticoid excretory responses to alpha 1–24 ACTH (cortrosyn) in sodium depleted normal man. J Clin Endocrinol Metab 1973; 36: 30–35.

    PubMed  CAS  Google Scholar 

  33. Aquilera G, Kiss A, Luo X, Akbasak B-S. The renin angiotensin system and the stress response. Ann NY Acad Science 1995; 771: 173–186.

    Google Scholar 

  34. Bethune JE, Nelson DH. Hyponatremia in hypopituitarism. N Engl J Med 1965; 272: 771–776.

    PubMed  CAS  Google Scholar 

  35. Williams GH, Rose LI, Dluhy RG, Dingman JF, Lauler DP. Aldosterone response to sodium restriction and ACTH stimulation in panhypopituitarism. J Clin Endocrinol Metab 1971; 32: 27–35.

    PubMed  CAS  Google Scholar 

  36. Guillon G, Trueba M, Joubert D, et al. Vasopressin stimulates steroid secretion in human adrenal glands: comparison with angiotensin II effect. Endocrinology 1995; 136: 1285–1295.

    PubMed  CAS  Google Scholar 

  37. Atarashi K, Mulrow PJ, Franco-Saenz R. Effect of atrial peptides on aldosterone production. J Clin Invest 1985; 76: 1807–1811.

    PubMed  CAS  Google Scholar 

  38. Cary RM. Physiologic and possible pathophysiologic relevance of dopamine mechanisms in the control of aldosterone secretion. In: Mantero F, Biglieri EG, Funder JW, Scoggins BA, eds. The Adrenal Gland and Hypertension. Raven, New York, Pr 1985, pp. 55–65.

    Google Scholar 

  39. Zipser RD, Meidar V, Horton R. Characteristics of aldosterone binding in human plasma. J Clin Endocrinol Metab 1980; 50: 158–162.

    PubMed  CAS  Google Scholar 

  40. Chavarri M, Luetscher JA, Dowdy AJ, Ganguly A. The effects of temperature and plasma cortisol on distribution of aldosterone between plasma and red blood cells: influence on metabolic clearance rate and on hepatic and renal extraction of aldosterone. J Clin Endocrinol Metab 1977; 44: 752–759.

    PubMed  CAS  Google Scholar 

  41. Vecsei P, Düsterdieck G, Jahnecke J, Lommer D, Wolff HP. Secretion and turnover of aldosterone in various pathological states. Clin Sci 1969; 36: 241–256.

    PubMed  CAS  Google Scholar 

  42. Marver D, Kokko JP. Renal target sites and the mechanism of action of aldosterone. Min and Elect Metab 1983; 9: 1–18.

    CAS  Google Scholar 

  43. Morris DJ. The metabolism and mechanism of action of aldosterone. Endocr Rev 1981; 2: 234–247.

    PubMed  CAS  Google Scholar 

  44. Gross F. 1974 Effects of aldosterone on blood pressure, water and electrolytes. In: Page IH, Bumpus FM, eds. Handbook of Experimental Pharmacology XXXVII. Angiotensin. Springer-Verlag, New York, 1974, pp. 369–399.

    Google Scholar 

  45. Sebastian A, Sutton JM, Butter HN, Schambelan M, Poler SM. Effect of mineralocorticoid replacement therapy on renal acid-base homeostasis in adrenalectomized patients. Kidney Int 1980; 18: 762–773.

    PubMed  CAS  Google Scholar 

  46. el Mernissi G, Bartlet-Bas C, Khadouri C, Cheval L, Marsy S, Doucet A. Short-term effect of aldosterone on vasopressin-sensitive adenylate cyclase in rat collecting tubule. Am J Physiol 1993; 264 (5 Pt 2): F821 - F826.

    PubMed  Google Scholar 

  47. Lauler DP, Hickler RB, Thorn GW. The salivary sodium-potassium ratio. A useful “screening” test for aldosteronism in hypertensive patients. N Engl J Med 1962; 267: 1136–1137.

    CAS  Google Scholar 

  48. Cony DB, Tuck ML. Secondary aldosteronism. Endocrinol Metab Clin North Am 1995; 24: 511–529.

    Google Scholar 

  49. Michailov ML, Schad H, Dahlheim H, Jacob ICM, Brechtelsbauer H. Renin-angiotensin system responses of acute graded hemorrhage in dogs. Circ Shock 1987; 21: 217–224.

    PubMed  CAS  Google Scholar 

  50. Gore DC, Dalton JM, Gehr TWB. Colloid infusions reduce glomerular filtration in resuscitated burn victims. J Trauma Inj Infect Crit Care 1996; 40: 356–360.

    CAS  Google Scholar 

  51. Cioffi WG Jr, Vaughan GM, Heironimus JD, Jordon BS, Mason AD Jr, Pruett BA Jr. Dissociation of blood volume and flow in regulation of salt and water balance in burn patients. Ann Surg 1991; 214: 213–220.

    PubMed  Google Scholar 

  52. Mitchell JB, Grandjean PW, Pizza FX, Starling RD, Holtz RW. The effect of volume ingested on rehydration and gastric emptying following exercise-induced dehydration. Med Sci Sports Exerc 1994; 26: 1135–1143.

    PubMed  CAS  Google Scholar 

  53. Takamata A, Mack GW, Gillen CM, Nadel ER. Sodium appetite, thirst, and body fluid regulation in humans during rehydration without sodium replacement. Am J Physiol 1994;(5 Pt 2)266:R1493–R1502.

    Google Scholar 

  54. Fraser R, James VHT, Brown JJ, Davies DL, Lever AF, Robertson JIS. Changes in plasma aldosterone, cortisol, corticosterone, and renin concentration in a patient with sodium-losing renal disease. J Endocrinol 1966; 35: 311–320.

    PubMed  CAS  Google Scholar 

  55. Popovtzer MM, Katz FH, Pinggera WF, Robinette J, Halgrimson CG, Butkus DE. Hyperkalemia in salt-wasting nephropathy. Study of the mechanism. Arch Int Med 1973; 132: 203–208.

    CAS  Google Scholar 

  56. Uribarri J, Oh MS, Carroll HJ. Salt-Losing Nephropathy. Clinical presentation and mechanism. Am J Neph 1983; 3: 193–198.

    CAS  Google Scholar 

  57. Dillon MJ, Leonard JV, Buckler JM, et al. Pseudohypoaldosteronism. Arch Dis Child 1980; 55: 427–434.

    PubMed  CAS  Google Scholar 

  58. Throckmorton DC, Bia MJ. Pseudohypoaldosteronism: case report and discussion of the syndrome. Yale J Biol Med 1991; 64: 247–254.

    PubMed  CAS  Google Scholar 

  59. Christlieb AR, Assal J-P, Katsilambros N, Williams GH, Kozak GP, Suzuki T. Plasma renin activity and blood volume in uncontrolled diabetes. Ketoacidosis, a state of secondary aldosteronism. Diabetes 1975; 24: 190–193.

    PubMed  CAS  Google Scholar 

  60. Waldhäusl W, Kleinberger G, Korn A, Dudczak R, Bratusch-Marrain P, Nowatny P. Severe hyperglycemia: effects of rehydration on endocrine derangements and blood glucose concentration. Diabetes 1979; 28: 577–584.

    PubMed  Google Scholar 

  61. Espiner EA, Tucci JR, Jagger PI, Paul GL, Lauler DP. The effect of acute diuretic-induced extracellular volume depletion on aldosterone secretion in normal man. Clin Sci 1967; 33: 125–134.

    PubMed  CAS  Google Scholar 

  62. Dluhy RG, Cain JP, Williams GH. The influence of dietary potassium on the renin and aldosterone response to diuretic-induced volume depletion. J Lab Clin Med 1974; 83: 249–255.

    PubMed  CAS  Google Scholar 

  63. Lijnen P, Fagard R, Staessen J, Amery A. Effect of chronic diuretic treatment on the plasma reninangiotensin-aldosterone system in essential hypertension. Br J Clin Pharm 1981; 12: 387–392.

    CAS  Google Scholar 

  64. Bartter FC, Gill JR Jr, MacCardie RC. Hyperplasia of the juxtaglomerular complex with hyperaldosteronism and hypokalemic alkalosis. A new syndrome. Am J Med 1962; 33: 811–828.

    PubMed  CAS  Google Scholar 

  65. Gill JR Jr. Bartter’s syndrome. Ann Rev Med 1980; 31: 405–419.

    PubMed  Google Scholar 

  66. Clive DM. Bartter’s syndrome. The unsolved puzzle. Am J Kidney Dis 1995; 25: 813–823.

    PubMed  CAS  Google Scholar 

  67. Zarraga Larrondo S, Vallo A, Gainza J, Muíïiz R, Erauzkin GG, Lampreabe J. Familial hypokalemiahypomagnesemia or Gitelman’s syndrome: a further case. Nephron 1992; 62: 340–344.

    Google Scholar 

  68. Gibbs CJ, Millar JGB. Renin-angiotensin-aldosterone and kallekrein investigations in a patient with resistent hypomagnesaemia due to Gitelman’s syndrome. Ann Clin Biochem 1995; 32: 426–430.

    PubMed  Google Scholar 

  69. Usberti M, Gazzotti RM, Poiesi C, D’Avanzo L, Ghielmi S. Considerations on the sodium retention in nephrotic syndrome. Am J Neph 1995; 15: 38–47.

    CAS  Google Scholar 

  70. Brown EA, Markandu ND, Sagnella GA, Jones BE, MacGregor GA. Lack of effect of captopril on the sodium retention of the nephrotic syndrome. Nephron 1984; 37: 43–48.

    PubMed  CAS  Google Scholar 

  71. Perico N, Remuzzi G. Renal handling of sodium in the nephrotic syndrome. Am J Neph 1993; 13: 413–421.

    CAS  Google Scholar 

  72. Bernard DB. Extrarenal complications of the nephrotic syndrome. Kidney Int 1988; 33: 1184–1202.

    PubMed  CAS  Google Scholar 

  73. Schrier RW, Arroyo V, Bernardi M, Epstein M, Henriksen JH, Rodés J. Peripheral arterial vasodilation hypothesis: a proposal for the initiation of renal sodium and water retention in cirrhosis. Hepatology 1988; 8: 1151–1157.

    PubMed  CAS  Google Scholar 

  74. Epstein M. The sodium retention of cirrhosis: a reappraisal. Hepatology 1986; 6: 312–315.

    PubMed  CAS  Google Scholar 

  75. Gentilini P, LaVilla G, Romanelli RG, Foschi M, Laffi G. Pathogenesis and treatment of ascites in hepatic cirrhosis. Cardiology 1994; 84 (Suppl 2): 68–79.

    PubMed  Google Scholar 

  76. Arroyo V, Bosch J, Mauri M, et al. Renin, aldosterone and renal hemodynamics in cirrhosis with ascites. Eur J Clin Invest 1979; 9: 69–73.

    PubMed  CAS  Google Scholar 

  77. Bernardi M, Trevisani F, Gasbarrini A, Gasbarrini G. Hepatorenal disorders: role of the reninangiotensin-aldosterone system. Semin Liver Dis 1994; 14: 23–34.

    PubMed  CAS  Google Scholar 

  78. Nicholls KM, Shapiro MD, Kluge R, Chung H-M, Bichet DG, Schrier RW. Sodium excretion in advanced cirrhosis: effect of expansion of central blood volume and suppression of plasma aldosterone. Hepatology 1986; 6: 235–238.

    PubMed  CAS  Google Scholar 

  79. Jespersen B, Eiskjaer H, Jensen JD, Mogensen CE, Sorensen SS, Pedersen EB. Effects of high dose atrial natriuretic peptide on renal hemodynamics, sodium handling and hormones in cirrhotic patients with and without ascites. Scand J Clin Lab Invest 1995; 55: 273–288.

    PubMed  CAS  Google Scholar 

  80. Laffi G, LaVilla G, Gentilini P. Pathogenesis and management of the hepatorenal syndrome. Semin Liver Dis 1994; 14: 71–81.

    PubMed  CAS  Google Scholar 

  81. Dzau VJ, Colucci WS, Hollenberg NK, Williams GH. Relation of the renin-angiotensin-aldosterone system to clinical state of congestive heart failure. Circulation 1981; 63: 645–651.

    PubMed  CAS  Google Scholar 

  82. Francis GS, Benedict C, Johnstone DE, et al. Comparison of neuroendocrine activation in patients with left ventricular dysfunction with and without congestive heart failure. A substudy of the studies of left ventricular dysfunction (SOLVD). Circulation 1990; 82: 1724–1729.

    PubMed  CAS  Google Scholar 

  83. Cannon PJ. The kidney in heart failure. N Engl J Med 1977; 296: 26–32.

    PubMed  CAS  Google Scholar 

  84. Lee WH, Packer M. Prognostic importance of serum sodium concentration and its modification by converting-enzyme inhibition in patients with severe chronic heart failure. Circulation 1986; 73: 257–267.

    PubMed  CAS  Google Scholar 

  85. Packer ML. The neurohormonal hypothesis: a theory to explain the disease progression in heart failure. J Am Coll Cardiol 1992; 20: 248–254.

    PubMed  CAS  Google Scholar 

  86. Dahlöf B. Effect of angiotensin II blockade on cardiac hypertrophy and remodelling: a review. J Hum Hypertens 9 1995; (Suppl 5): S37 - S44.

    PubMed  Google Scholar 

  87. Kawaguchi H, Kitabatake A. Renin-angiotensin system in failing heart. J Mol Cell Cardiol 1995; 27: 201–209.

    PubMed  CAS  Google Scholar 

  88. Barraclough MA. Sodium and water depletion with acute malignant hypertension. Am J Med 1966; 40: 265–272.

    PubMed  CAS  Google Scholar 

  89. Kindaid-Smith P. Understanding malignant hypertension. Aust NZ J Med 11 1981; (Suppl 1): 64–68.

    Google Scholar 

  90. Thel MC, Mannon RB, Allen NB. Hyperrenin-hyperaldosterone-dependent malignant hypertension in polyarteritis nodosa. Southern Med J 1993; 86: 1400–1402.

    PubMed  CAS  Google Scholar 

  91. Davis BA, Crook JE, Vestal RE, Oates JA. Prevalence of renovascular hypertension in patients with grade III or IV hypertensive retinopathy. N Engl J Med 1979; 301: 1273–1276.

    PubMed  CAS  Google Scholar 

  92. Martinez-Maldonado M. Pathophysiology of renovascular hypertension. Hypertension 1991; 17: 709–719.

    Google Scholar 

  93. Michelakis AM, Foster JH, Liddle GW, Rhamy RK, Kuchel O, Gordon RD. Measurement of renin in both renal veins. Its use in diagnosis of renovascular hypertension. Arch Int Med 1967; 120: 444 448.

    Google Scholar 

  94. Wilson M, Morganti AA, Zervoudakis I, et al. Blood pressure, the renin-aldosterone system and sex steroids throughout normal pregnancy. Am J Med 1980; 68: 97–104.

    PubMed  CAS  Google Scholar 

  95. August P, Mueller FB, Sealey JE, Edersheim TG. Role of renin-angiotensin system in blood pressure regulation in pregnancy. Lancet 1995; 345: 896–897.

    PubMed  CAS  Google Scholar 

  96. Schrier RW, Briner VA. Peripheral vasodilation hypothesis of sodium and water retention in pregnancy: implications for pathogenesis of preeclampsia-eclampsia. Ob Gynecol 1991; 77: 632–639.

    CAS  Google Scholar 

  97. Brown JJ, Davies DL, Doak PB, Lever AF, Robertson JIS. Plasma renin concentration in the hypertensive diseases of pregnancy. J Ob Gynecol 1966; 73: 410–417.

    CAS  Google Scholar 

  98. August P, Lenz T, Ales KL, et al. Longitudinal study of the renin-angiotensin-aldosterone system in hypertensive pregnant women: deviations related to the development of superimposed preeclampsia. Am J Ob Gynecol 1990; 163: 1612–1621.

    CAS  Google Scholar 

  99. Gant NF, Daley GL, Chand S, Whalley PJ, MacDonald PC. A study of angiotensin II pressor response throughout primagravid pregnancy. J Clin Invest 1973; 52: 2682–2689.

    PubMed  CAS  Google Scholar 

  100. Perez-Ayuso RM, Arroyo V, Planas R, et al. Randomized comparative study of efficiency of furosemide versus spironolactone in nonazotemic cirrhosis with ascites. Relationship between the diuretic response and the activity of the renin-aldosterone system. Gastroenterology 1983; 84: 961–968.

    PubMed  CAS  Google Scholar 

  101. Chatterjee K, Parmley WW, Cohn JN, et al. A cooperative multicenter study of captopril in congestive heart failure: hemodynamic effects and long-term response. Am Heart J 1985; 110: 439–447.

    PubMed  CAS  Google Scholar 

  102. Consensus Trial Study Group. Effects of enalapril on mortality in severe congestive heart failure. Results of the cooperative north Scandinavian enalopril survival study (CONSENSUS). N Engl J Med 1987; 316: 1429–1435.

    Google Scholar 

  103. SOLVD Investigators. Effect of enalapril on survival in patients with reduced left ventricular ejection fractions and congestive heart failure. N Engl J Med 1991; 325: 293–302.

    Google Scholar 

  104. Ramahi TM, Lee FA. Medical therapy and prognosis in chronic heart failure. Lessons from clinical trials. Cardiol Clin 1995; 13: 5–26.

    PubMed  CAS  Google Scholar 

  105. Rutledge J, Ayers C, Davidson R, et al. Effect of intravenous enalaprilat in moderate and severe systemic hypertension. Am J Cardiol 1988; 62: 1062–1067.

    PubMed  CAS  Google Scholar 

  106. Hudson JB, Chobanian AV, Reiman AS. Hypoaldosteronism. A clinical study of a patient with an isolated adrenal mineralocorticoid deficiency, resulting in hyperkalemia and Stokes-Adams attacks. N Engl J Med 1957; 257: 529–536.

    PubMed  CAS  Google Scholar 

  107. Veldhuis JD, Melby JC. Isolated aldosterone deficiency in man: acquired and inborn errors in the biosynthesis or action of aldosterone. Endocr Rev 1981; 2: 495–517.

    PubMed  CAS  Google Scholar 

  108. Jagger PI. Hypoaldosteronism. Endocrinologist 1995; 5: 23–27.

    Google Scholar 

  109. Williams GH. Hyporeninemic hypoaldosteronism. N Engl J Med 1986; 314: 1041, 1042.

    Google Scholar 

  110. Polsky FI, Roque D, Hill PE. Hyporeninemic hypoaldosteronism complicating primary autonomic insufficiency. West J Med 1993; 159: 185–187.

    PubMed  CAS  Google Scholar 

  111. Uribarri J, Oh MS, Carroll HJ. Hyperkalemia in diabetes mellitus. J Diabetes Complic 1990; 4: 3–7.

    CAS  Google Scholar 

  112. Farsang C, Varga K, Vajda L, Alföldi S, Kapocsi J. Effects of clonidine and guanfacine in essential hypertension. Clin Pharm Ther 1994; 36: 588–594.

    Google Scholar 

  113. Michelakis AM, McAllister RG. The effect of chronic adrenergic receptor blockade on plasma renin activity in man. J Clin Endocrinol Metab 1972; 34: 386–394.

    PubMed  CAS  Google Scholar 

  114. Weidmann P, Reinhart R, Maxwell MH, Rowe P, Coburn JW, Massry SG. Syndrome of hyporeninemic hypoaldosteronism and hyperkalemia in renal disease. J Clin Endocrinol Metab 1973; 36: 965–977.

    PubMed  CAS  Google Scholar 

  115. Schambelan M. Sebastian A, Biglieri EG. Prevalence, pathogenesis, and functional significance of aldosterone deficiency in hyperkalemic patients with chronic renal insufficiency. Kidney Int 1980; 17: 89–101.

    Google Scholar 

  116. Monnens L, Fiselier T, Bos B, van Munster P. Hyporeninemic hypoaldosteronism in infancy. Nephron 1983; 35: 140–142.

    PubMed  CAS  Google Scholar 

  117. Tan SY, Shapiro R, Franco R, Stockard H. Mulrow PJ. Indomethacin-induced prostaglandin inhibition with hyperkalemia. A reversible cause of hyporeninemic hypoaldosteronism. Ann Intern Med 1979; 90: 783–785.

    PubMed  CAS  Google Scholar 

  118. Tan SY, Burton M. Hyporeninemic hypoaldosteronism. An overlooked cause of hyperkalemia. Arch Intern Med 1981; 141: 30–33.

    PubMed  CAS  Google Scholar 

  119. Kaufman JS, Peck M, Hamburger RJ, Flamenbaum W. Isolated hypoaldosteronism and abnormalities in renin, kallikrein, and prostaglandin. Nephron 1986; 43: 203–210.

    PubMed  CAS  Google Scholar 

  120. Nadler JL, Lee FO, Hsueh W, Horton R. Evidence of prostacyclin deficiency in the syndrome of hyporeninemic hypoaldosteronism. N Engl J Med 1986; 314: 1015–1020.

    PubMed  CAS  Google Scholar 

  121. Kalin MF, Poretsky L, Seres DS, Zumoff B. Hyporeninemic hypoaldosteronism associated with acquired immune deficiency syndrome. Am J Med 1987; 82: 1035–1038.

    PubMed  CAS  Google Scholar 

  122. DeFronza RA. Hyperkalemia and hyporeninemic hypoaldosteronism. Kidney Int 1980; 17: 118–134.

    Google Scholar 

  123. Findling JW, Adams AH, Raff H. Selective hypoaldosteronism due to an endogenous impairment in angiotensin II production. N Engl J Med 1987; 316: 1632–1635.

    PubMed  CAS  Google Scholar 

  124. Williams FA Jr, Schambelan M, Biglieri EG, Carey RM. Acquired primary hypoaldosteronism due to isolated zona glomerulosa defect. N Engl J Med 1983; 309: 1623–1627.

    PubMed  Google Scholar 

  125. Carey RM, Schambelan M, Biglieri EG, Bright GM. Letter to the Editor. N Engl J Med 1984; 310: 1395.

    Google Scholar 

  126. Saenger P, Levine LS, Irvine WJ, et al. Progressive adrenal failure and polyglandular auto-immune disease. J Clin Endocrinol Metab 1982; 54: 863–868.

    PubMed  CAS  Google Scholar 

  127. Otabe S, Muto S, Asano Y, et al. Hyperreninemic hypoaldosteronism due to hepatocellular carcinoma metastatic to the adrenal gland. Clin Nephrol 1991; 35: 66–71.

    PubMed  CAS  Google Scholar 

  128. Thomas JP. Aldosterone deficiency in a patient with idiopathic haemochromatosis. Clin Endocrinol 1984; 21: 271–277.

    CAS  Google Scholar 

  129. Otabe S, Muto S, Asano Y, et al. Selective hypoaldosteronism in a patient with Sjögen’s syndrome: insensitivity to angiotensin II. Nephron 1991; 59: 466–470.

    PubMed  CAS  Google Scholar 

  130. O’Kelly R, Magee F, McKenna TJ. Routine heparin therapy inhibits adrenal aldosterone production. J Clin Endocrinol Metab 1983; 56: 108–112.

    PubMed  Google Scholar 

  131. Aull L, Chao H, Coy K. Heparin-induced hyperkalemia. DICP Ann Pharmacother 1990; 24: 244–246.

    CAS  Google Scholar 

  132. Levesque H, Verdier S, Cailleux N, et al. Low molecular weight heparins and hypoaldosteronism. Br Med J 1990; 300: 1437–1438.

    CAS  Google Scholar 

  133. Hauffa BP, Sólyom J, Glâz E, et al. Severe hypoaldosteronism due to corticosterone methyloxidase type II deficiency in two boys: metabolic and gas chromatography-mass spectrometry studies. Eur J Pediatr 1991; 150: 149–153.

    PubMed  CAS  Google Scholar 

  134. Picco P, Garibaldi L, Cotellessa M, DiRocco M, Borrone C. Corticosterone methyl oxidase type II deficiency: a cause of failure to thrive and recurrent dehydration in early infancy. Eur J Pediatr 1992; 151: 170–173.

    PubMed  CAS  Google Scholar 

  135. Rao RH, Vagnucci AH, Amico JA. Bilateral Massive adrenal hemorrhage: early recognition and treatment. Ann Intern Med 1989; 110: 227–235.

    PubMed  CAS  Google Scholar 

  136. Dahlberg PJ, Goellner MH, Pehling GB. Adrenal insufficiency secondary to adrenal hemorrhage. Two case reports and a review of cases confirmed by computerized tomography. Arch Intern Med 1990; 150: 905–909.

    PubMed  CAS  Google Scholar 

  137. Zipser RD, Davenport MW, Martin KL, et al. Hyperreninemic hypoaldosteronism in the critically ill: a new entity. J Clin Endocrinol Metab 1981; 53: 867–873.

    PubMed  CAS  Google Scholar 

  138. Parker LN, Levin ER, Lifrak ET. Evidence for adrenocortical adaptation to severe illness. J Clin Endocrinol Metab 1985; 60: 947–952.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Jagger, P.I. (1997). Adrenocortical Response to Critical Illness. In: Ober, K.P. (eds) Endocrinology of Critical Disease. Contemporary Endocrinology, vol 4. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-4757-2584-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2584-1_7

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-032-8

  • Online ISBN: 978-1-4757-2584-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics