Skip to main content

General Adaptation Syndrome

An Overview

  • Chapter
  • 152 Accesses

Part of the book series: Contemporary Endocrinology ((COE,volume 4))

Abstract

Stress may be defined as a threat to homeostasis or the stable internal environment. The physiologic response to stress involves activation of the central nervous system (CNS) with consequent stimulation of the hypothalamic—pituitary—adrenal (HPA) axis and the autonomic nervous system Importantly, these systems respond to hormonal stimulation from the immune system; they also interact with other endocrine systems, such as those controlling gonadal, thyroid, and growth functions. The principal central control loci of the stress system are the corticotropin releasing hormone (CRH) and locus cerulus-norepinephrinergic neurons of the hypothalamus and brainstem; these neurons regulate the HPA axis and the sympathetic nervous system, respectively. The hormone products of these systems, cortisol and the catecholamines, act to maintain cardiovascular, metabolic, and immune homeostasis during stress.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bernard C. An introduction to the Study of Experimental Medicine. Henry Schuman, New York, 1949.

    Google Scholar 

  2. Cannon W. The wisdom of the body. Norton, New York, 1932.

    Google Scholar 

  3. Selye H. General adaptation syndrome and the diseases of adaptation. J Clin Endocrinol 1946; 6: 117–230.

    Article  CAS  Google Scholar 

  4. Curling TB. On acute ulceration of the duodenum in cases of burns. Trans Med-Chir Soc London 1842; 25: 260.

    CAS  Google Scholar 

  5. Carroll BJ, Feinberg M, Greden JF, Tarika J, Albala AA, Haskett RF, James NM, Kronfol Z, Lohr N, Steiner M, de Vigne JP, Young E. A specific laboratory test for the diagnosis of melanholia. Standardization, validation and clinical utility. Arch Gen Psychiatry 1981; 38: 15–22.

    Article  PubMed  CAS  Google Scholar 

  6. Gold P, Chrousos G, Kellner C, Post R, Roy A, Avgerinos P, Schulte H, Oldfield E, Loriaux DL. Psychiatric implications of basic and clinical studies with CRF. Am J Psychiatry 1984; 141: 619–627.

    PubMed  CAS  Google Scholar 

  7. Chrousos GP. The hypothalamic-pituitary-adrenal axis and immune mediated inflammation. N Engl J Med 1995; 332: 1351–1362.

    Article  PubMed  CAS  Google Scholar 

  8. Boumpas DT, Chrousos GP, Wilder RL, Cupps TR, Balow JE. Glucocorticoid therapy for immune-mediated diseases: basic and clinical correlates. Ann Intern Med 1993; 119: 1198–1208.

    PubMed  CAS  Google Scholar 

  9. Bamberger CM, Bamberger A-M, de Castro M, Chrousos GP. Glucocorticoid receptor 0, a potential endogenous inhibitor of glucocorticoid action in humans. J Clin Invest 1995; 95: 2435–2441.

    Article  PubMed  CAS  Google Scholar 

  10. Bamberger CM, Schulte HM, Chrousos GP. Molecular determinants of glucocorticoid receptor function and tissue sensitivity to glucocorticoids. Endocrine Rev 1996; 17: 245–261.

    CAS  Google Scholar 

  11. Udelsman R, Ramp J, Gallucci WT, Gordon A, Lipford E, Norton JA, Loriaux DL, Chrousos GP. Adaptation during surgical stress. A reevaluation of the role of glucocorticoids. J Clin Invest 1986; 77: 1377–1381.

    Article  PubMed  CAS  Google Scholar 

  12. Munck A, Guyre PM, Holbrook NJ. Physiological functions of glucocorticoids in stress and their relation to pharmacological actions. Endocrine Rev 1984; 5: 25–44.

    Article  CAS  Google Scholar 

  13. Sack RL, Lewy AJ, Blood ML, Keith LD, Nakagawa H. Circadian rhythm abnormalities in totally blind people: incidence and clinical significance. J Clin Endocrinol Metab 1992; 75: 127–134.

    Article  PubMed  CAS  Google Scholar 

  14. Desir D, Van Cauter E, Fang VS, Martino E, Jadot C, Spire JP, Noel P, Refetoff S, Copinschi G, Golstein J. Effects of “jet-lag” on hormonal patterns. I. Procedures, variations in total plasma proteins, and disruption of adrenocorticotropin-cortisol periodicity. J Clin Endocrinol Metab 1981; 52: 628–641.

    Article  PubMed  CAS  Google Scholar 

  15. Orth DN, Kovacs WJ, Debold CR. The adrenal cortex. In: Wilson JD, Foster DW, eds. Williams Textbook of Endocrinology, 8th ed. Saunders, Philadelphia, 1992, pp. 489–619.

    Google Scholar 

  16. Levin N, Shinsako J, Dallman M. Corticosterone acts on the brain inhibit adrenalectomy-induced adrenocorticotropin secretion. Endocrinology 1988; 122: 694–701.

    Article  PubMed  CAS  Google Scholar 

  17. Keller-Wood ME, Dallman MF. Corticosteroid inhibition of ACTH secretion. Endocr Rev 1984; 5: 1–24.

    Article  PubMed  CAS  Google Scholar 

  18. Reincke M, Allolio B, Wurth G, Winkelmann W. The hypothalamic-pituitary-adrenal axis in critical illness: response to dexamethasone and corticotropin-releasing homone. J Clin Endocrinol Metab 1993; 77: 151–156.

    Article  PubMed  CAS  Google Scholar 

  19. Petrides JS, Mueller GP, Kalogeras KT, Chrousos GP, Gold PW, Deuster PA. Exercise-induced activation of the hypothalamic-pituitary-adrenal axis: marked differences in the sensitivity to glucocorticoid suppression. J Clin Endocrinol Metab 1994; 79: 377–383.

    Article  PubMed  CAS  Google Scholar 

  20. Gomez T, Magiakou MA, Mastorakos G, Chrousos GP. The pituitary corticotrope is not the rate limiting step in the postoperative recovery of the hypothalamic-pituitary-adrenal axis in patients with Cushing’s syndrome. J Clin Endocrinol Metab 1993; 77: 173–177.

    Article  PubMed  CAS  Google Scholar 

  21. Edwards CRW, Stewart PM, Burt D, Brett L, McIntyre MA, Sutanto WS, de Kloet ER, Monder C. Localization of 11-beta-hydroxysteroid dehydrogenase tissue-specific protector of the mineralocorticoid receptor. Lancet 1988;ii:986–989.

    Google Scholar 

  22. McEwen BS, de Kloet ER, Rostene W. Adrenal steroid receptors and actions in the nervous system. Physiol Rev 1986; 66: 1121–1188.

    PubMed  CAS  Google Scholar 

  23. Reul JHM, de Kloet ER. Two receptor systems for corticosterone in rat brain: microdistribution and differential occupation. Endocrinology 1985; 117: 2505–2511.

    Article  PubMed  CAS  Google Scholar 

  24. Gaillard R, Riondel A, Muller AF, Herrmann W, Baulieu EE. RU 486: a steroid with antiglucocorticosteroid activity that only disinhibits the human pituitary-adrenal system at a specific time of day. Proc Natl Acad Sci USA 1984; 81: 3879–3882.

    Article  PubMed  CAS  Google Scholar 

  25. Brady LS, Whitfield RI Jr, Fox RJ, Gold PW, Herkenham M. Long-term antidepressant administration alters corticotropin-releasing hormone, tyrosine hydroxylase, and mineralocorticoid receptor gene expression in rat brain. Therapeutic implications. J Clin Invest 1991; 87, 831–837.

    Google Scholar 

  26. Peiffer A, Veilleux S, Barden N. Antidepressant and other centrally acting drugs regulate glucocorticoid receptor messenger RNA levels in rat brain. Psychoneuroendocrinology 1991; 16: 505–515.

    Article  PubMed  CAS  Google Scholar 

  27. Vale W, Spiess J, Rivier C, Rivier J. Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin and beta-endorphin. Science 1981; 213: 1394–1397.

    Article  PubMed  CAS  Google Scholar 

  28. De Bold CR, Sheldon WR, DeCherney GS, Jackson RV, Alexander AN, Vale W, Rivier J, Orth DN. Arginine vasopressin potentiates adrenocorticotropin release induced by ovine corticotropin-releasing factor. J Clin Invest 1984; 73: 533–538.

    Article  Google Scholar 

  29. Schurmeyer TH, Averginos PC, Gold PW, Gallucci WT, Tomai TP, Cutler GB Jr, Loriaux DL, Chrousos GP. Human corticotropin-releasing factor in man: pharmacokinetic properties and dose response of plasma adrenocorticotropin and cortisol secretion. J Clin Endocrinol Metab 1984; 59: 1103–1108.

    Article  PubMed  CAS  Google Scholar 

  30. Schulte HM, Chrousos GP, Oldfield EH, Gold PW, Cutler GB, Loriaux DL. Ovine corticotropinreleasing factor administration in normal men. Pituitary and adrenal responses in the morning and evening. Horm Res 1985; 21: 69–74.

    Article  PubMed  CAS  Google Scholar 

  31. Orth DN. Corticotropin-releasing hormone in humans. Endocr Rev 1992; 13: 164–191.

    PubMed  CAS  Google Scholar 

  32. Oldfield EH, Doppman JL, Nieman LK, Chrousos GP, Miller DL, Katz DA, Cutler GB Jr, Loriaux DL. Petrosal sinus sampling with and without corticotropin releasing hormone for the differential diagnosis of Cushing’ s syndrome. N Engl J Med 1991; 325: 897–905.

    Article  PubMed  CAS  Google Scholar 

  33. Schulte HM, Chrousos GP, Avgerinos P, Oldfield EH, Gold PW, Cutler GB Jr, Loriaux DL. The corticotropin releasing hormone stimulation test: a possible aid in the evaluation of patients with adrenal insufficiency. J Clin Endocrinol Metab 1984; 58: 1064–1067.

    Article  PubMed  CAS  Google Scholar 

  34. Saper CB, Lowey AD, Swanson LW, Cowan WM. Direct hypothalamic-autonomic connections. Brain Res 1976; 117: 305–312.

    Article  PubMed  CAS  Google Scholar 

  35. Valentino RJ, Foote SL. Corticotropin releasing hormone increases tonic but not sensory-evoked activity of noradrenergic locus ceruleus neurons in unanesthetized rats. J Neurosci 1988; 8: 1016–1025.

    PubMed  CAS  Google Scholar 

  36. Kalin NH. Behavioural effects of ovine corticotropin-releasing factor administered to rhesus monkeys. Fed Proc 1985; 44: 249–253.

    PubMed  CAS  Google Scholar 

  37. Koob GF, Bloom FE. Corticotropin-releasing factor and behavior. Fed Proc 1991; 44: 259–263.

    Google Scholar 

  38. Rivier C, Rivier J, Vale W. Stress-induced inhibition of reproductive function: role of endogenous corticotropin releasing factor. Science 1986; 231: 607–609.

    Article  PubMed  CAS  Google Scholar 

  39. Sutton RE, Koob GF, Le Moal M, Rivier J, Vale W. Corticotropin releasing factor produces behavioural activation in rats. Nature 1982; 297: 331–333.

    Article  PubMed  CAS  Google Scholar 

  40. Aguilera G, Milian MA, Hauger RL, Catt KJ. Corticotropin-releasing factor receptors: distribution and regulation in brain and peripheral tissues. Ann NY Acad Sci 1987; 512: 48–66.

    Article  PubMed  CAS  Google Scholar 

  41. Menzaghi F, Rassnick S, Heinrichs S, Baldwin H, Pich EM, Weiss F, Koob GF. The role of corticotropin-releasing factor in the anxiogenic effects of ethanol withdrawal. Ann NY Acad Sci 1996; 176–184.

    Google Scholar 

  42. Behan DP, Linton EA, Lowry PJ. Isolation of the human plasma corticotropin-releasing factor-binding protein. J Endocrinol 1989; 122: 23–31.

    Article  PubMed  CAS  Google Scholar 

  43. Krishnan KRR, Doraiswamy PM, Lurie SN, Figiel GS, Husain MM, Boyko OB, Ellinwood EH Jr., Nemeroff CB. Pituitary size in depression. J Clin Endocrinol Metab 1991; 72: 256–259.

    Article  PubMed  CAS  Google Scholar 

  44. Amsterdam J, Marinelli D, Arger P, Winokur A. Assessment of adrenal gland volume by computed tomography in depressed patients and healthy volunteers: a pilot study. Psychiatry Res 1987; 21: 189–197.

    Article  PubMed  CAS  Google Scholar 

  45. Gold PW, Goodwin FK, Chrousos GP. Clinical and biochemical manifestations of depression. Relation to neurobiology of stress. N Engl J Med 1988;319: 348–353, 413–420.

    Google Scholar 

  46. Nemeroff CB, Owens MJ, Bissette G, Audoin AC, Stanley M. Reduced corticotropin releasing factor binding sites in the frontal cortex of suicide victims. Arch Gen Psychiatry 1988; 45: 577–579.

    Article  PubMed  CAS  Google Scholar 

  47. Raadsheer FC, Hoogendijk WJG, Stam FC, Tilders FJH, Swaab DF. Increased numbers of corticotropin-releasing hormone expressing neurons in the hypothalamic paraventricular nucleus of depressed patients. Neuroendocrinology 1994; 60: 436–444.

    Article  PubMed  CAS  Google Scholar 

  48. Wehr TA, Wirz-Justice A. Circadian rhythm mechanisms in affective illness and in anti-depressant drug action. Pharmacopsychiatry 1982; 15: 31–39.

    Article  CAS  Google Scholar 

  49. De Bellis MD, Chrousos GP, Dorn LD, Burke L, Helmers K, Kling MA, Tricket PK, Rutnam FW. Hypothalamic-pituitary-adrenal axis dysregulation in sexually abused girls. J Clin Endocrinol Metab 1994; 78: 249–255.

    Article  PubMed  Google Scholar 

  50. Joseph-Vanderpool JR, Rosenthal NE, Chrousos GP, Wehr TA, Skwerer R, Kasper S, Gold PW. Evidence for hypothalamic CRH deficiency in patients with seasonal affective disorder. J Clin Endocrinol Metab 1991; 72: 1382–1386.

    Article  PubMed  CAS  Google Scholar 

  51. Demitrack MA, Dale JK, Straus SE, Laue L, Listwak SJ, Kruesi MJ, Chrousos GP, Gold PW. Evidence of impaired activation of the hypothalamic-pituitary-adrenal axis in patients with chronic fatigue syndrome. J Clin Endocrinol Metab 1991; 73: 1224–1234.

    Article  PubMed  CAS  Google Scholar 

  52. Griep EN, Boerdma JW, de Kloet ER. Altered reactivity of the hypothalamic-pituitary-adrenal axis in the primary fibromyalgia syndrome. J Rheumatol 1993; 20: 469–474.

    PubMed  CAS  Google Scholar 

  53. Crofford LJ, Pillemer SR, Kalogeras KT, Cash JM, Michelson D, Kling MA, Sternberg EM, Gold PW, Chrousos GP, Wilder RL. Hypothalamic-pituitary-adrenal axis perturbation in patients with fibromyalgia. Arthritis Rheum 1994; 37: 1583–92.

    Article  PubMed  CAS  Google Scholar 

  54. Chrousos GP, Gold PW. The concepts of stress.snd stress system disorders. Overview of physical and behavioral homeostasis. J Am Med Assoc 1992; 267: 1244–1252.

    Article  CAS  Google Scholar 

  55. Magiakou MA, Mastorakos G, Rabin D, Dubbert B, Gold PW, Chrousos GP. Hypothalamic corticotropin releasing hormone suppression during the postpartum period: Implications for the increase of psychiatric manifestations in this period. J Clin Endocrinol Metab 1996; 81: 1912–1917.

    Article  PubMed  CAS  Google Scholar 

  56. Waltman C, McCaul ME, Wand GS. Adrenocorticotropin responses following administration of ethanol and ovine corticotropin-releasing hormone in the sons of alcoholics and control subjects. Alcohol Clin Exp Res 1994; 18: 826–830.

    Article  PubMed  CAS  Google Scholar 

  57. Rivier C, Imaki T, Vale W. Prolonged response to alcohol: effect on CRF mRNA levels, and CRFand stress-induced ACTH secretion in the rat. Brain Res 1990; 520: 1–5.

    Article  PubMed  CAS  Google Scholar 

  58. Wand GS, Dobs AS. Alterations in the hypothalamic-pituitary-adrenal axis in actively drinking alcoholics. J Clin Endocrinol Metab 1991; 72: 1290–1295.

    Article  PubMed  CAS  Google Scholar 

  59. Waltman C, Blevins LS, Boyd G, Wand GS. The effects of mild ethanol intoxication on the hypothalamic-pituitary-adrenal axis in nonalcoholic men. J Clin Endocrinol Metab 1993; 77: 518–522.

    Article  PubMed  CAS  Google Scholar 

  60. Sternberg EM, Chrousos GP, Wilder RL, Gold PW. The stress response and the regulation of inflammatory disease: NIH combined clinical staff conference. Ann Intern Med 1992; 117: 854–866.

    PubMed  CAS  Google Scholar 

  61. Ur E, Grossman A. Corticotropin-releasing hormone in health and disease: an update. Acta Endocrinol 1992; 127: 193–199.

    PubMed  CAS  Google Scholar 

  62. Makino S, Gold PW, Schulkin J. Effects of corticosterone on CRH mRNA and content in the bed nucleus of the stria terminalis; comparison with the effects in the central nucleus of the amygdala and the paraventricular nucleus of the hypothalamus. Brain Res 1994; 657: 141–149.

    Article  PubMed  CAS  Google Scholar 

  63. Shibasaki T, Imaki T, Hotta M, Ling N, Demura H. Psychological stress increases arousal without significant increase in adrenocorticotropin and catecholamine secretion. Brain Res 1993; 618: 71–75.

    Article  PubMed  CAS  Google Scholar 

  64. Karalis K, Sano H, Redwine J. Autocrine or paracrine inflammatory actions of corticotropin-releasing hormone in vivo. Science 1991; 254: 421–423.

    Article  PubMed  CAS  Google Scholar 

  65. Makrigiannakis A, Margions AN, Le Goascogne C, Zoumakis E, Nikas G, Stournaras C, Psychoyos A, Gravanis A. Corticotropin-releasing hormone (CRH) is expressed at the implantation sites of early pregnant rat uterus. Life Sci 1995; 57: 1869–1875.

    Article  PubMed  CAS  Google Scholar 

  66. Geracioti TD Jr., Orth DN, Ekhator NN, Blumenkopf B, Loosen PT. Serial cerebrospinal fluid corticotropin-releasing hormone concentrations in healthy and depressed humans J Clin Endocrinol Metab 1992; 74: 1325–1330.

    CAS  Google Scholar 

  67. Chang CP, Pearse R 2d, O’Connell S, Rosenfeld MG. Identification of a seven transmembrane helix receptor for corticotropin-releasing factor and sauvagine in mammalian brain. Neuron 1993; 11: 1187–1195.

    Article  PubMed  CAS  Google Scholar 

  68. Chen R, Lewis KA, Perrin MH, Vale WW. Expression cloning of a human corticotropin-releasingfactor receptor. Proc Natl Acad Sci USA 1993; 90: 8967–8971.

    Article  PubMed  CAS  Google Scholar 

  69. Perrin MH, Donaldson CJ, Chen R, Lewis KA, Vale WW. Cloning and functional expression of a rat brain corticotropin releasing factor (CRF) receptor. Endocrinology 1993; 133: 3058–3061.

    Article  PubMed  CAS  Google Scholar 

  70. Vita N, Laurent P, Lefort S, Chalon P, Lelias JM, Kaghad M, LeFur G, Caput D, Ferrara P. Primary structure and functional expression of mouse pituitary and human brain corticotrophin releasing factor receptors. FEBS Lett 1993; 335: 1–5.

    Article  PubMed  CAS  Google Scholar 

  71. Potter E, Sutton S, Donaldson C, Chen R, Perrin M, Lewis K, Sawchenko PE, Vale W. Distribution of corticotropin-releasing factor receptor mRNA expression in the rat brain and pituitary. Proc Natl Acad Sci USA 1994; 91: 8777–8781.

    Article  PubMed  CAS  Google Scholar 

  72. Lovenberg TW, Chalmers DT, Liu C, De Souza EB. CRF (2 alpha) and CRF (2 beta) receptor mRNAs are differentially distributed between the rat CNS and peripheral tissues. Endocrinology 1995; 136: 3351–3355.

    Article  Google Scholar 

  73. Perrin M, Donaldson C, Chen R, Blount A, Berggren T, Bilezikjian L, Sawchenko P, Vale W. Identification of a second corticotropin-releasing factor receptor gene and characterization of a cDNA expressed in heart. Proc Natl Acad Sci USA 1995; 92: 2969–2973.

    Article  PubMed  CAS  Google Scholar 

  74. Vaughan J, Donaldson C, Bittencourt J, Perrin MH, Lewis K, Sutton S, Chan R, Turnbull AV, Lovejoy D, Rivier C. Urocortin, a mammalian neuropeptide related to fish urotensin I and to corticotropin-releasing factor. Nature 1995; 378: 287–292.

    Article  PubMed  CAS  Google Scholar 

  75. Muglia L, Jacobson L, Dikkes P, Majzoub J. Corticotropin-releasing hormone deficiency reveals major fetal but not adult glucocorticoid need. Nature 1995; 373: 427–432.

    Article  PubMed  CAS  Google Scholar 

  76. Liaw CW, Lovenberg TW, Barry G, Oltersdorf T, Grigoriadis DE, De Souza EB. Cloning and characterization of the human corticotropin releasing factor (CRF)2 receptor complementary deoxyribonucleic acid. Endocrinology 1996; 137: 72–77.

    Article  PubMed  CAS  Google Scholar 

  77. Donaldson CJ, Sutton SW, Perrin MH, Corrigan AZ, Lewis KA, Rivier JE, Vaughan JM, Vale WW. Cloning and characterization of human urocortin. Endocrinology 1996; 137: 2167–2170.

    Article  PubMed  CAS  Google Scholar 

  78. Behan DP, Heinrichs SC, Troncosa JC, Liu KJ, Kawas CH, Ling N, DeSouza EB. Displacement of corticotropin-releasing factor from its binding protein as a possible treatment for Alzheimers disease. Nature 1995; 378: 284–287.

    Article  PubMed  CAS  Google Scholar 

  79. Pardridge WM. Receptor-mediated peptide transport through the blood-brain barrier. Endocr Rev 1986; 7: 314–330.

    Article  PubMed  CAS  Google Scholar 

  80. Sawchenko PE, Swanson LW. The organization of noradrenergic pathways from the brainstem to the paraventricular and supraoptic nuclei in the rat. Brain Res Rev 1982; 4: 275–325.

    Article  Google Scholar 

  81. Whitnall MH. Stress selectively activates the vasopressin-containing subset of corticotropin-releasing hormone neurons. Neuroendocrinology 1989; 50: 702–707.

    Article  PubMed  CAS  Google Scholar 

  82. Holmes MC, Antoni FA, Aguilera G, Catt M. Magnocellular axons in passage through the the median eminence release vasopressin. Nature 1986; 319: 326–329.

    Article  PubMed  CAS  Google Scholar 

  83. Hashimoto K, Suemaru S, Takao T, Sugawara M, Makino S, Ota Z. Corticotropin-releasing hormone and pituitary-adrenocortical responses in chronically stressed rats. Regul Pept 1988; 23: 117–126.

    Article  PubMed  CAS  Google Scholar 

  84. Harbuz MS, Lightman SL. Stress and the hypothalamo-pituitary-adrenal axis: acute, chronic and immunological activation. J Endocrinol 1992; 134: 327–339.

    Article  PubMed  CAS  Google Scholar 

  85. Spencer RL, McEwen BS. Adaptation of the hypothalamo-pituitary-adrenal axis to chronic ethanol stress. Neuroendocrinology 1990; 52: 481–489.

    Article  PubMed  CAS  Google Scholar 

  86. Scribner KA, Walker C, Cascio CS, Dallman MF. Chronic streptozotocin diabetes in rats facilitates the acute stress response without altering pituitary or adrenal responsiveness to secretagogues. Endocrinology 1991; 129: 99–108.

    Article  PubMed  CAS  Google Scholar 

  87. Plotsky PM. Pathways to the secretion of adrenocorticotropin: a view from the portal. J Neuroendocrinol 1991; 3: 1–9.

    Article  PubMed  CAS  Google Scholar 

  88. Canny BJ, Funder JW, Clarke IJ. Glucocorticoids regulate ovine hypophysial portal levels of corticotropin-releasing factor and arginine vasopressin in a stress specific manner. Endocrinology 1989; 125: 2532–2539.

    Article  PubMed  CAS  Google Scholar 

  89. Engler D, Pham T, Fullerton MJ, Ooi G, Funder JW, Clarke H. Studies of the secretion of corticotropinreleasing factor and arginine vasopressin into the hypophysial-portal circulation of the conscious sheep. I. Effect of an audiovisual stimulus and insulin-induced hypoglycemia. Neuroendocrinology 1989; 49: 367–381.

    Article  PubMed  CAS  Google Scholar 

  90. Caraty A, Grino M, Locatelli A, Guillaume V, Boudouresque F, Coute-Devolx B, Oliver C. Insulin-induced hypoglycemia stimulates corticotropin-releasing factor and arginine vasopressin secretion into hypophysial portal blood of conscious rams. J Clin Invest 1990; 85: 1716–1721.

    Article  PubMed  CAS  Google Scholar 

  91. Jia LG, Canny BJ, Orth DN, Leong DA. Distinct classes of corticotropes mediate corticotropinreleasing hormone-and arginine vasopressin-stimulated adrenocorticotropin release. Endocrinology 1991; 128: 197–203.

    Article  PubMed  CAS  Google Scholar 

  92. Aguilera G, Harwood JP, Wilson JX, Morell J, Brown JH, Catt KJ. Mechanisms of action of corticotropin-releasing factor and other regulators of corticotropin release in rat pituitary cells. J Biol Chem 1983; 258: 8039–8045.

    PubMed  CAS  Google Scholar 

  93. Al-Damluji S, Perry L, Tomlin S, Bouloux P, Grossman A, Rees LH, Besser GM. Alpha adrenergic stimulation of corticotropin secretion by a specific central mechanism in man Neuroendocrinology 1987; 45: 68–76.

    CAS  Google Scholar 

  94. Torpy DJ, Grice JE, Hockings GI, Walters MM, Crosbie GV, Jackson RV. Alprazolam blocks the naloxone-stimulated hypothalamo-pituitary-adrenal axis in man. J Clin Endocrinol Metab 1993; 76: 388–391.

    Article  PubMed  CAS  Google Scholar 

  95. Delitala G, Grossman A, Besser GM. Differential effects of opiate peptides and alkaloids on anterior pituitary hormone secretion. Neuroendocrinology 1983; 37: 275–279.

    Article  PubMed  CAS  Google Scholar 

  96. Larsen PJ, Jessop D, Patel H, Lightman SL, Chowdrey HS. Substance P inhibits the release of anterior pituitary adrenocorticotrophin via a central mechanism involving corticotrophin-releasing factor-containing neurons in the hypothalamic paraventricular nucleus. J Neuroendocrinol 1993; 5: 99–105.

    Article  PubMed  CAS  Google Scholar 

  97. Al-Damluji S, Rees LH. The neuroendocrine control of corticotropin secretion in normal humans and in Cushing’s disease. In: Collu R, Brown GM, Van Loon GR, eds. Clinical Neuroendocrinology. Blackwell Oxford, 1988, pp. 251–286.

    Google Scholar 

  98. Liposits Z, Phelix C, Paull WK. Electron microscopic analysis of tyrosine hydroxylase, dopaminefi-hydroxylase and phenylethanolamine-N-methyltransferase immunoreactive innervation of the hypothalamic paraventricular nucleus in the rat. Histochemistry 1986; 84: 105–120.

    Article  PubMed  CAS  Google Scholar 

  99. Cummings S, Elde R, Ells J, Lindau A. Corticotropin-releasing factor immunoreactivity is widely distributed within the central nervous system of the rat: an immunohistochemical study. J Neurosci 1983; 3: 1355–1368.

    PubMed  CAS  Google Scholar 

  100. Charney DS, Heninger GR. Noradrenergic function and the mechanism of antianxiety treatment: I. The effect of long term alprazolam treatment. Arch Gen Psychiatry 1985; 42: 458–467.

    Article  PubMed  CAS  Google Scholar 

  101. Kaye H, Berrittini W, Gwirtsman H, George DT. Altered cerebrospinal fluid neuropeptide Y and peptide YY immunoreactivity in anorexia and bulimia nervosa. Arch Gen Psych 1990; 47: 548–556.

    Article  CAS  Google Scholar 

  102. Engler D, Liu J, Clarke IJ, Funder JW. Corticotropin-release inhibitory factor. Evidence for dual stimulatory and inhibitory hypothalamic regulation over adrenocorticotropin secretion and biosynthesis. Trends Endocrinol Metab 1994; 5: 272–283.

    Article  PubMed  CAS  Google Scholar 

  103. Pacak K, McCarty R, Palkovits M, Cizza G, Kopin IJ, Goldstein DS, Chrousos GP. Decreased central and peripheral catecholaminergic activation in obese zucker rats. Endocrinology 1995; 136: 4360–4367.

    Article  PubMed  CAS  Google Scholar 

  104. Paul WE, Seder RA. Lymphocyte responses and cytokines. Cell 1994; 76: 241–251.

    Article  PubMed  CAS  Google Scholar 

  105. Mosmann TR, Sad S. The expanding universe of T-cell subsets:Thl, Th2 and more. Immunol Today 1996; 17: 138–146.

    Article  PubMed  CAS  Google Scholar 

  106. Elenkov IJ, Papanicolaou DA, Wilder RL, Chrousos GP. Effects of glucocorticoids and catecholamines on human interleukin-12 and interleukin-10 production: Implications for the effect of stress on immunity and the Thl/Th2 balance. Proc Am Assoc Physicians, 1996; 108: 374–381.

    CAS  Google Scholar 

  107. Lerner BH. Can stress cause disease? Revisiting the tuberculosis research of Thomas Holmes 1949–1961. Ann Intern Med 1996; 124: 673–680.

    PubMed  CAS  Google Scholar 

  108. Cohen S, Tyrrell DA, Smith AP. Psychological stress and the common cold. N Engl J Med 1991; 325: 606–612.

    Article  PubMed  CAS  Google Scholar 

  109. Wilder RL. Neuroendocrine-immune system interactions and autoimmunity. Ann Rev Immunol 1995; 13: 307–338.

    Article  CAS  Google Scholar 

  110. Kowaki G, Gottschall PE, Somogyvari-Vigh A, Tatsuno I, Yatohgo T, Arimura A. Rapid increase in plasma IL-6 after hemorrhage, and posthemorrhage reduction of the IL-6 response to LPS in conscious rats: interrelations with plasma corticosterone levels. Neuroimmunomodulation 1994; 1: 127–134.

    Article  Google Scholar 

  111. van Gool J, van Vugt H, Helle M, Aarden LA. The relation among stress, adrenaline, interleukin 6 and acute phase proteins in the rat. Clin Immunol Immunopathol 1990; 57: 200–210.

    Article  PubMed  Google Scholar 

  112. Hirano T, Akira S, Taga T, Kishimoto T. Biological and clinical aspects of interleukin 6. Immunol Today 1990; 11: 44349.

    Article  Google Scholar 

  113. Mastorakos G, Chrousos GP, Weber J. Recombinant interleukin-6 activates the hypothalamicpituitary-adrenal axis in humans. J Clin Endocrinol Metab 1993; 77: 1690–1694.

    Article  PubMed  CAS  Google Scholar 

  114. Mastorakos G, Weber JS, Magiakou MA, Gunn H, Chrousos GP. Hypothalamic-pituitary-adrenal axis activation and stimulation of vasopressin secretion by recombinant interleukin-6 in humans: potential implications for the syndrome of inappropriate vasopressin secretion. J Clin Endocrinol Metab 1994; 79: 934–939.

    Article  PubMed  CAS  Google Scholar 

  115. Bernton EW, Beach LE, Holaday JW, Smallridge RC, Fein HG. Release of multiple hormones by a direct effect of interleukin-1 on pituitary cells. Science 1987; 238: 519–521.

    Article  PubMed  CAS  Google Scholar 

  116. Fukata J, Usui T, Naitoh Y, Nakai Y, Imura H. Effects of recombinant interleukin-la, 113, -2 and -6 on ACTH synthesis and release in the mouse pituitary tumour cell line AtT-20. J Endocrinol 1988; 122: 33–39.

    Article  Google Scholar 

  117. Salas MA, Evans SW, Levell MJ, Whicker JT. Interleukin-6 and ACTH act synergistically to stimulate the release of corticosterone from adrenal gland cells. Clin Exp Immunol 1990; 79: 470–473.

    Article  PubMed  CAS  Google Scholar 

  118. Solomon S. Corticostatins. Trends Endocrinol Metab 1993; 4: 260–264.

    Article  PubMed  CAS  Google Scholar 

  119. Culman J, Tschope C, Jost N, Itoi K, Unger T. Substance P and neurokinin A induced desensitization to cardiovascular and behavioral effects: evidence for the involvement of different tachykinin receptors. Brain Res 1993; 625: 75–83.

    Article  PubMed  CAS  Google Scholar 

  120. Jessop DS, Chowdrey HS, Larsen PJ, Lightman S. Substance P: mulitifunctional peptide in the hypothalamo-pituitary system? J Endocrinol 1992; 132: 331–337.

    Article  PubMed  CAS  Google Scholar 

  121. Besedovsky H, Sorkin E. Network of immune-neuroendocrine interactions. Clin Exp Immunol 1977; 27: 1–12.

    PubMed  CAS  Google Scholar 

  122. Craddock CG. Corticosteroid-induced lymphopenia, immunosuppression and body defense. Ann Intern Med 1978; 88: 564–566.

    PubMed  CAS  Google Scholar 

  123. Calogero AE, Sternberg EM, Bagdy G, Smith C, Bernardini R, Acsentijeych S, Wilder RL, Gold PW, Chrousos GP. Neurotransmitter-induced hypothalamic-pituitary-adrenal axis responsiveness is defective in inflammatory disease-susceptible Lewis rats: in vivo and in vitro studies suggesting globally defective hypothalamic secretion of corticotropin-releasing hormone. Neuroendocrinology 1992; 55: 600–608.

    Article  PubMed  CAS  Google Scholar 

  124. Patchev VK, Kalogeras KT, Zelazowski P, Wilder RL, Chrousos GP. Increased plasma concentrations, hypothalamic output, and in vivo release of arginine vasopressin in inflammatory disease-prone, hypothalamic corticotropin-releasing hormone-deficient Lewis rats. Endocrinology 1992; 131: 1453–1457.

    Article  PubMed  CAS  Google Scholar 

  125. Wick G, Hu Y, Schwarz S, Kroemer G. Immunoendocrine communication via the hypothalamo-pituitary-adrenal axis in autoimmune diseases. Endocr Rev 1993; 14: 539–563.

    PubMed  CAS  Google Scholar 

  126. Neeck G, Federlin K, Graef V, Rusch D, Schmidt KL. Adrenal secretion of cortisol in patients with rheumatoid arthritis. J Rheumatol 1990; 17: 24–29.

    PubMed  CAS  Google Scholar 

  127. Chikanza IC, Petrou P, Kingsley G, Chrousos G, Panayi GS. Defective hypothalamic response to immune and inflammatory stimuli in patients with rheumatoid arthritis. Arthritis Rheum 1992; 35: 1281–1288.

    PubMed  CAS  Google Scholar 

  128. Crofford LJ, Sano H, Karalis K, Friedman TC, Epps HR, Remmers EF, Mathern P, Chrousos GP. Corticotropin-releasing hormone in synovial fluids and tissues of patients with rheumatoid arthritis and osteoarthritis. J Immunol 1993; 151: 1587–1596.

    PubMed  CAS  Google Scholar 

  129. Sternberg EM, Glowa JR, Smith MA, Calogero AE, Listwak SJ, Aksentijevich S, Wilder RL, Chrousos GP. Corticotropin releasing hormone related behavioral and neuroendocrine responses to stress in Lewis and Fisher rats. Brain Res 1992; 570: 54–60.

    Article  PubMed  CAS  Google Scholar 

  130. Vamvakopoulos NC, Chrousos GP. Hormonal regulation of human corticotropin-releasing hormone gene expression: implications for the stress response and immune/inflammatory reaction. Endocr Rev 1994; 15: 409–420.

    PubMed  CAS  Google Scholar 

  131. Haas DA, George SR. Gonadal regulation of corticotropin releasing factor in hypothalamus. Brain Res Bull 1988; 20: 361–367.

    Article  PubMed  CAS  Google Scholar 

  132. Bohler HC Jr, Zoeller RT, King JC, Rubin BS, Weber R, Merriam GR. Corticotropin releasing hormone mRNA is elevated in the afternoon of proestrus in the parvocellular paraventricular nuclei of the female rat. Mol Brain Res 1990; 8: 259–262.

    Article  PubMed  CAS  Google Scholar 

  133. Fredericksen SO, Ekman R, Gottfries CG, Widerlov E, Jonsson S. Reduced concentrations of galanin, arginine vasopressin, neuropeptide Y and peptide YY in the temporal cortex but not the hypothalamus of brains from schizophrenics. Acta Psychiatr Scand 1991; 83: 273–277.

    Article  Google Scholar 

  134. Gallucci WT, Baum A, Laue L, Rabin DS, Chrousos GP, Gold PW, Kling MA. Sex differences in sensitivity of the hypothalamic-pituitary-adrenal axis. Health Psychol 1993; 12: 420–425.

    Article  PubMed  CAS  Google Scholar 

  135. Peiffer A, Barden N. Estrogen-induced decrease of glucocorticoid receptor messenger ribonucleic acid concentration in rat anterior pituitary gland. Mol Endocrinol 1987; 1: 435–440.

    Article  PubMed  CAS  Google Scholar 

  136. Turner BB. Sex difference in glucocorticoid binding in rat pituitary is estrogen dependent. Life Sci 1990; 46: 1399–1406.

    Article  PubMed  CAS  Google Scholar 

  137. Turner BB. Sex differences in the binding of type I and type II corticosteroid receptors in rat hippocampus. Brain Res 1992; 581: 229–136.

    Article  PubMed  CAS  Google Scholar 

  138. Crofford LJ, Sano H, Karalis K, Webster EL, Goldmuntz EA, Chrousos GP, Wilder RL. Local secretion of corticotropin-releasing hormone in the joints of Lewis rats with inflammatory arthritis. J Clin Invest 1992; 90: 2555–2564.

    Article  PubMed  CAS  Google Scholar 

  139. Karalis K, Crofford L, Wilder RL, Chrousos GP. Glucocorticoid and/or glucocorticoid antagonist effects in inflammatory disease-susceptible Lewis rats and inflammatory disease-resistant Fischer rats. Endocrinology 1995; 136: 3107–3112.

    Article  PubMed  CAS  Google Scholar 

  140. Mastorakos G, Bouzas EA, Silver PB, Sartani G, Friedman TC, Chan CC, Caspi CC, Chrousos GP. Immune corticotropin-releasing hormone is present in the eyes of and promotes experimental autoimmune uveoretinitis in rodents. Endocrinology 1995; 136: 4650–4658.

    Article  PubMed  CAS  Google Scholar 

  141. Scopa CD, Mastorakos G, Friedman TC, Melachrinou M, Merino MJ, Chrousos GP. Presence of immunoreactive corticotropin releasing hormone in thyroid lesions. Am J Pathol 1994; 145: 1159–1167.

    PubMed  CAS  Google Scholar 

  142. Allen JB, Blatter D, Calandra GB, Wilder RL. Sex hormone effects on the severity of streptococcal wall-induced polyarthritis in the rat. Arthritis Rheum 1983; 26: 560–563.

    Article  PubMed  CAS  Google Scholar 

  143. Lightman SL. From stress to cognition. Nature 1995; 378: 233–234.

    Article  PubMed  CAS  Google Scholar 

  144. Gaskin JH, Kitay JI. Adrenocortical function in the hamster: sex differences and effects of gonadal hormones. Endocrinology 1970; 87: 779–786.

    Article  PubMed  CAS  Google Scholar 

  145. Handa RJ, Burgess LH, Kerr JE, O’Keefe JA. Gonadal steroid hormone receptors and sex differences in the hypothalamo-pituitary-adrenal axis. Horm Behav 1994; 28: 464–476.

    Article  PubMed  CAS  Google Scholar 

  146. Ferin M, Van Vugt DA, Wardlaw SL. The hypothalamic control of the menstrual cycle and the role of endogenous opioid peptides. Rec Prog Horm Res 1984; 40: 441–485.

    PubMed  CAS  Google Scholar 

  147. Shivers BD, Harlan RE, Morrell JI, Pfaff DW. Absence of estradiol concentration in cell nuclei of LHRH-immunoreactive neurons. Nature 1983; 304: 345–347.

    Article  PubMed  CAS  Google Scholar 

  148. Jacobson JD, Nisula BC, Steinberg AD. Modulation of the expression of murine lupus by gonadotropin-releasing hormone analogs. Endocrinology 1994; 134: 2516–2523.

    Article  PubMed  CAS  Google Scholar 

  149. Cid MC, Kleinman HK, Grant DS, Schnaper HW, Fauci AS, Hoffman GS. Estradiol enhances leukocyte binding to tumor necrosis factor (TNF)-stimulated endothelial cells via an increase in TNFinduced adhesion molecules E-selectin, intercellular adhesion molecule type 1, and vascular cell adhesion molecule type 1. J Clin Invest 1994; 93: 17–25.

    Article  PubMed  CAS  Google Scholar 

  150. Stein B, Yang MX. Repression of the interleukin-6 promoter by estrogen receptor is mediated by NF-kappa B and C/EBP beta. Mol Cell Biol 1995; 15: 4971–4979.

    PubMed  CAS  Google Scholar 

  151. Reichlin S. Neuroendocrinology. In: Wilson JD, Foster DW, eds. Williams Textbook of Endocrinology. 8th ed. Saunders, Philadelphia, 1992, pp. 135–219.

    Google Scholar 

  152. Redei E, Hilderbrand H, Aird F. Corticotropin release-inhibiting factor is preprothyrotropin-releasing hormone-(178–199). Endocrinology 1995; 136: 3557–3563.

    Article  PubMed  CAS  Google Scholar 

  153. Kakucska I, Yanping Q, Lechan RM. Changes in adrenal status affect hypothalamic thyrotropinreleasing hormone gene expression in parallel with corticotropin-releasing hormone. Endocrinology 1995; 136: 2795–2802.

    Article  PubMed  CAS  Google Scholar 

  154. Lee SL, Stewart K, Goodman RH. Structure of the gene encoding thyrotropin releasing hormone. J Biol Chem 1988;263:16, 604–16, 609.

    Google Scholar 

  155. Blalock JE. A molecular basis for bidirectional communication between the immune and neuroendocrine systems. Physiol Rev 1989; 69: 1–32.

    PubMed  CAS  Google Scholar 

  156. Wade CE, Lindberg JS, Cockrell Jl, Lamiell M, Hunt MM, Ducey J, Jurney TH. Upon-admission adrenal steroidogenesis is adapted to the degree of illness in intensive care unit patients. J Clin Endocrinol Metab 1988; 67: 223–227.

    Article  PubMed  CAS  Google Scholar 

  157. Reincke M, Lehmann R, Karl M, Magiakou A, Chrousos GP, Allolio B. Severe illness. Neuroendocrinology. Ann NY Acad Sci 1996; 771: 556–569.

    Article  Google Scholar 

  158. Reincke MM, Magiakou MA, Wurth G, Winkelmann W, Chrousos GP, Allolio B. Activation of the hypothalamic-pituitary-adrenal axis in patients with critical illness: role of TNF-alpha, IL-1[3 and IL-6. Exp Clin Endocrinol 1993; 101 (Supp1.I): 89.

    Google Scholar 

  159. Bilezikjian VM, Blount AL, Vale WW. The cellular actions of vasopressin in corticotrophs of the anterior pituitary: Resistance to glucocorticoid actions. Mol Endocrinol 1987; 1: 451–458.

    Article  PubMed  CAS  Google Scholar 

  160. Michelson D, Stone L, Galliven E, Magiakou MA, Chrousos GP, Sternberg EM, Gold PW. Multiple sclerosis is associated with alterations in hypothalamic—pituitary—adrenal function. J Clin Endocrinol Metab 1994; 79: 848–853.

    Article  PubMed  CAS  Google Scholar 

  161. Cronin L, Cook DJ, Carlet J, Heyland DK, King D, Math B, Lansang MAD, Fisher CJ Jr. Corticosteroid treatment for sepsis: A critical appraisal and meta-analysis of the literature. Crit Care Med 1995; 23: 1430–1439.

    Article  PubMed  CAS  Google Scholar 

  162. Kidess A, Caplan R, Reynertson R, Wickus G, Goodnough D. Transient corticotropin deficiency in critical illness. Mayo Clin Proc 1993; 68: 435–441.

    Article  PubMed  CAS  Google Scholar 

  163. Merry W, Caplan R, Wickus G, Reynertson R, Kisken W, Cogbill T, Landercasper J. Postoperative acute adrenal failure caused by transient corticotropin deficiency. Surgery 1994; 116: 1095–1100.

    PubMed  CAS  Google Scholar 

  164. Almawi WY, Lipman ML, Stevens AC, Zanker B, Hadro ET, Strom BT. Abrogation of glucocorticosteroid-mediated inhibition of T cell proliferation by the synergistic action of Il-1, Il-6, and IFN-y. J Immunol 1991; 146: 3523–3527.

    PubMed  CAS  Google Scholar 

  165. Kam JC, Szefler SJ, Surs W, Sher ER, Leung DYM. Combination IL-2 and IL-4 reduces glucocorticoid receptor binding affinity and T cell response to glucocorticoids. J Immunol 1993; 151: 3460–3466.

    PubMed  CAS  Google Scholar 

  166. Norbiato G, Bevilacqua M, Vago T, Baldi G, Chebat E, Bertora P, Moroni M, Galli M, Oldenburg M. Cortisol resistance in acquired immunodeficiency syndrome. J Clin Endocrinol Metab 1992; 74: 608–613.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Torpy, D.J., Chrousos, G.P. (1997). General Adaptation Syndrome. In: Ober, K.P. (eds) Endocrinology of Critical Disease. Contemporary Endocrinology, vol 4. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-4757-2584-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2584-1_1

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-032-8

  • Online ISBN: 978-1-4757-2584-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics