Skip to main content

Electro-Optical Design

  • Chapter
Visual Communication

Abstract

This final chapter extends the information-theoretic assessment to the electrooptical design of the image-gathering device (Fig. 7.1). Section 7.1 ties the basic design specifications of this device to the model of image gathering given in Section 2.1. Section 7.2 addresses the objective lens diffraction, variable transmittance shading, and defocus; Section 7.3 addresses the photodetectorarray sampling geometry and focal-plane processing; and Section 7.4 addresses the line-scan photodetector aperture shaping and sampling interval. The remainder of this chapter covers topics that combine electro-optical design with digital image processing for specific applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. N. Slater, Remote Sensing: Optics and Optical Systems ( Addison-Wesley, Reading, Mass., 1980 ).

    Google Scholar 

  2. R. W. Boyd, Radiometry and the Detection of Optical Radiation ( John Wiley and Sons, New York, 1983 ).

    Google Scholar 

  3. H. H. Hopkins, “The frequency response of a defocused optical system,” Proc. Roy. Soc. A 231, 91–103 (1955).

    Article  MathSciNet  MATH  Google Scholar 

  4. M. Born and E. Wolf, Principles of Optics ( Pergamon, New York, 1965 ).

    Google Scholar 

  5. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, Second edition, 1996 ).

    Google Scholar 

  6. M. Mino and Y. Okano, “Improvement in the OTF of a defocused optical system through the use of shaded apertures,” Appl. Opt. 10, 2219–2225 (1971).

    Article  Google Scholar 

  7. J. M. Enoch and F. L. Tobey, Eds., Vertebrate Photoreceptor Optics ( Springer-Verlag, New York, 1981 ).

    Google Scholar 

  8. H. J. Metcalf, “Stiles-Crawford Apodization,” J. Opt. Soc. Am. 55, 72–74 (1965).

    Article  Google Scholar 

  9. J. P. Carroll, “Apodization Model of the Stiles-Crawford Effect,” J. Opt. Soc. Am. 70, 1155–1156 (1980).

    Article  Google Scholar 

  10. D. P. Peterson and D. Middleton, “Sampling and reconstruction of wavenumber-limited functions in n-dimensional Euclidean spaces,” Inform. and Control, 5, 279–323 (1962).

    Article  Google Scholar 

  11. R. M. Mersereau, “Two-dimensional signal processing from hexagonal rasters,” Proc. IEEE 67, 930–949 (1979).

    Article  Google Scholar 

  12. D. H. Pritchard, “Stripe-color-encoded single-tube color-television camera systems,” RCA Rev. 34, 217–266 (1973).

    Google Scholar 

  13. J. J. Brandings, G. L. Fredendall and D. H. Pritchard, “Striped color encoded single tube color television systems,” in Advances in Image Pickup and Display, Vol. 2, ed. B. Kazan (Academic Press, New York, 1975 ).

    Google Scholar 

  14. K. A. Parulski, “Color filters and processing alternatives for one-chip cameras,” IEEE Trans. Electron. Devices 32, 1381–1389 (1985).

    Article  Google Scholar 

  15. J. E. Greivenkamp, “Color dependent optical prefilter for the suppression of aliasing artifacts,” Appl. Opt. 29, 67–684 (1990).

    Article  Google Scholar 

  16. H. B. Barlow, “Critical limiting factors in the design of the eye and visual cortex,” Proc. R. Soc. London B212, 1–34 (1981).

    Article  Google Scholar 

  17. A. W. Snyder and W. H. Miller, “Photoreceptor diameter and spacing for highest resolving power,” J. Opt. Soc. Am. 67, 696–698 (1977).

    Article  Google Scholar 

  18. R. L. Valois and K. K. Valois, Spatial Vision ( Oxford University Press, Oxford, 1990 ).

    Google Scholar 

  19. P. Lennie, P. W. Haake and D. R. Williams, “The design of chromatically opponent receptive fields,” in Computational Models of Visual Processing, ed. M. S. Landy and J. A. Movshon ( MIT Press, Cambridge, Mass., 1991 ).

    Google Scholar 

  20. M. J. Hawken and A. J. Parker, “Spatial receptive field organization in monkey Vl and its relationship to the cone mosaic,” Computational Models of Visual Processing, ed. M. S. Landy and J. A. Movshon ( MIT Press, Cambridge, Mass, 1991 ).

    Google Scholar 

  21. C. Mead and M. A. Mahowald, “A silicon model of early visual processing,” Neural Networks 1, 91–97 (1988)

    Article  Google Scholar 

  22. C. Mead, Analog VLSI and Neural Systems (Addison-Wesley, Reading, Mass, 1989 ).

    Google Scholar 

  23. C. Mead, “Neuromorphic electronic system,” Proc. IEEE 78, 1629–1636 (1990).

    Article  Google Scholar 

  24. J. J. Atick, “Could information theory provide an ecological theory of sensory processing?” Network 3, 213–251 (1992).

    Article  MATH  Google Scholar 

  25. P. Mertz and F. Gray, “Theory of scanning and its relation to the characteristics of the transmitted signal in telephotography and television,” Bell Syst. Tech. J. 13, 494–515 (1934).

    Google Scholar 

  26. S. J. Katzberg, F. O. Huck and S. D. Wall, “Photosensor aperture shaping to reduce aliasing in optical-mechanical line-scan imaging systems,” Appl. Opt. 12, 1054–1060 (1973).

    Article  Google Scholar 

  27. R. D. Kell, A. V. Bedford and M. A. Trainer, “An experimental television system, part 2,” Proc. IRE 22, 1246–1246 (1934).

    Article  Google Scholar 

  28. S. C. Hsu, “The Kell factor: Past and present,” SMPTE Journal, 206–214 (February 1986).

    Google Scholar 

  29. W. F. Schreiber, Fundamentals of Electronic Imaging Systems (Springer-Verlag, New York, Third edition, 1993 ).

    Google Scholar 

  30. D. J. Jobson, Z. Rahman and G. A. Woodell, “Properties and performance of a center/surround retinex,” IEEE Trans. on Image Processing, 6, 451–462 (1997).

    Article  Google Scholar 

  31. E. H. Land, “An alternative technique for the computation of the designator in the retinex theory of color vision,” Proc. Nat. Acad. Sci., vol. 83, pp. 3078–3080 (1986).

    Article  Google Scholar 

  32. T. N. Cornsweet and J. I. Yellott, Jr., “Intensity-dependent spatial summation,” J. Opt. Soc. Am. A2, 1769–1789 (1985).

    Article  MathSciNet  Google Scholar 

  33. T. N. Cornsweet, “A simple retinal mechanism that has complex and profound effects on perception,” Am. J. Optometry and Physiological Optics 62, 427–438 (1985).

    Article  Google Scholar 

  34. J. I. Yellott, Jr., “Photon noise and constant-volume operators,” J. Opt. Soc. Am. A4, 2418–2446 (1987).

    Google Scholar 

  35. S. Najand, D. Blough and G. Healey, “Forward and inverse model for the intensity-dependent spread filter,” J. Opt. Soc. Am. A13, 1305–1314 (1996).

    Article  Google Scholar 

  36. T. N. Cornsweet, Visual Perception ( Academic Press, New York, 1970 ).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Huck, F.O., Fales, C.L., Rahman, Zu. (1997). Electro-Optical Design. In: Visual Communication. The Springer International Series in Engineering and Computer Science, vol 409. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-2568-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2568-1_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-5180-9

  • Online ISBN: 978-1-4757-2568-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics