Skip to main content
Book cover

Monte Carlo pp 145–254Cite as

Generating Samples

  • Chapter

Part of the book series: Springer Series in Operations Research ((ORFE))

Abstract

Generating a random sample constitutes an essential feature of every Monte Carlo experiment. If

$$\zeta = \int_R {\varphi (x)} dx,$$
(1)

as in expression (2.67), is to be estimated, then a procedure that randomly generates points from the uniform distribution on ℱm would suffice. When the cost of evaluating φ(x) in Algorithm \({\overline \zeta _n}\) in Sec. 2.7 is prohibitively high, the equivalence of expression(1) and

$$\zeta = \int_{{\mathbb{R}^m}} {\kappa (Z)dF(Z)}$$
(2)

in expression (2.72c) becomes of interest. Recall that, for A⊑ℬ ⊑ℝm, 0≤F(A) ≤FF(ℬ) ≤F(ℝm) = 1. Since F is a distribution function, an alternative procedure randomly samples Z (1),...,Z (n) independently from F and computes

$${\ddot \zeta _n} = {n^{ - 1}}\sum\limits_{i = 1}^n {\kappa ({Z^{(i)}})}$$

as an unbiased estimate of ζ. Although generating Z (i) from F always costs more than generating X (i) from the uniform distribution on ℱm, evaluating k(Z (i)) may be considerably less costly than evaluating φ(X (i)).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abramowitz, M. and I. Stegun (1964). Handbook of Mathematical Functions, Applied Mathematics Series 55, National Bureau of Standards, Washington, DC.

    Google Scholar 

  • Afflerbach, L. and W. Hörmann (1990). Nonuniform random numbers: a sensitivity analysis for transformation methods, Lecture Notes in Economics and Mathematical Systems, G. Plug and U. Dieter eds., Springer-Verlag, New York.

    Google Scholar 

  • Agrawal, A. and A. Satyanarayana (1984). An O|蒖| time algorithm for computing the reliability of a class of directed networks, Oper. Res., 32, 493–515.

    Article  Google Scholar 

  • Aho, A.V., J.E. Hoperoft and J.D. Ullman (1974). The Design and Analysis of Computer Algorithms, Addison-Wesley, Reading, MA.

    Google Scholar 

  • Ahrens, J.H. (1989). How to avoid logarithms in comparisons with uniform random variables, Computing, 41, 163–166.

    Article  Google Scholar 

  • Ahrens, J.H. (1993). Sampling from general distributions by suboptimal division of domains, Grazer Math. Berichte 319.

    Google Scholar 

  • Ahrens, J.H. and U. Dieter (1972). Computer methods for sampling from the exponential and normal distributions, Comm. ACM, 15, 873–882.

    Article  Google Scholar 

  • Ahrens, J.H. and U. Dieter (1974a). Non-Uniform Random-Numbers, Institut für Math. Statistik, Technische Hochschule, Graz, Austria.

    Google Scholar 

  • Ahrens, J.H. and U. Dieter (1974b). Computer methods for sampling from Gamma Beta, Poisson and binomial distributions, Computing, 12, 223–246.

    Article  Google Scholar 

  • Ahrens, J.H. and U. Dieter (1980). Sampling from the binomial and Poisson distributions: a method with bounded computation times, Computing, 25, 193–208.

    Article  Google Scholar 

  • Ahrens, J.H. and U. Dieter (1982a). Generating Gamma variates by a modified rejection technique, Comm. ACM, 25, 47–53.

    Article  Google Scholar 

  • Ahrens, J.H. and U. Dieter (1982b). Computer generation of Poisson deviates from modified normal distributions, ACM Trans. Math. Software, 8, 163–179.

    Article  Google Scholar 

  • Ahrens, J.H. and U. Dieter (1985). Sequential random sample, ACM Trans. Math. Software, 11, 157–169.

    Article  Google Scholar 

  • Ahrens, J.H. and U. Dieter (1988). Efficient table-free sampling methods for the exponential, Cauchy and normal distributions, Comm. ACM, 31, 1330–1337.

    Article  Google Scholar 

  • Ahrens, J.H. and U. Dieter (1991). A convenient sampling method with bounded computation times for Poisson distributions, The Frontiers of Statistical Computation, Simulation and Modeling, P.R. Nelson, E.J. Dudewicz, A. Öztürk, and E.C. van der Meulen ed., American Sciences Press, Syracuse, NY, pp. 137–149.

    Google Scholar 

  • Anderson, T.W. (1958). An Introduction to Multivariate Statistical Analysis, Wiley, New York.

    Google Scholar 

  • Atkinson, A.C. (1979). The computer generation of Poisson random variables, Appl. Statist. 28, 29–35.

    Article  Google Scholar 

  • Atkinson, A.C. and J. Whittaker (1976). A switching algorithm for the generation of beta random variables with at least one parameter less than one, J. Roy. Statist. Soc., Series A, 139, 462–467.

    Article  Google Scholar 

  • Best, D.J. (1978). A simple algorithm for the computer generation of random samples from a Student’s t or symmetric beta distribution, Proc. 1978 COMPSTAT Conference, Leiden, pp. 341–347.

    Google Scholar 

  • Best, D.J. (1983). A note on gamma variate generators with shape parameter less than unity, Computing, 30, 185–188.

    Article  Google Scholar 

  • Box, G.E.P and M.E. Muller (1958). A note on the generation of random normal deviates, Ann. Math. Statist., 29, 610–611.

    Article  Google Scholar 

  • Broder, A.Z. (1989). Generating random spanning trees, Thirtieth Annual Symposium on Foundations of Computer Science, pp. 442–447.

    Google Scholar 

  • Broder, A.Z. and A.R. Karlin (1989). Bounds on the cover time, J. Theoretical Probability, 2, 101–120.

    Article  Google Scholar 

  • Chen, H-C. and Y. Asau (1974). On generating random variates from an empirical distribution, AIIE Trans., 6 (2), 163–166.

    Article  Google Scholar 

  • Cheng, R.C.H. (1977). The generation of Gamma variables with non-integral shape parameter, Appl. Stat., 26, 71–75.

    Article  Google Scholar 

  • Cheng, R.C.H. (1978). Generating beta variates with non-integral shape parameters, Comm. ACM, 21, 317–322.

    Article  Google Scholar 

  • Cheng, R.C.H. and G.M. Feast (1979). Some simple Gamma variate generators, Appl. Statist., 28, 290–295.

    Article  Google Scholar 

  • Cheng, R.C.H. and G.M. Feast (1980). Gamma variate generators with increased shape parameter range, Comm. ACM, 23, 389–394.

    Article  Google Scholar 

  • Devroye, L. (1981). The computer generation of Poisson random variables, Computing, 26, 197–207.

    Article  Google Scholar 

  • Devroye, L. (1986). Non-Uniform Random Variate Generation, Springer-Verlag, New York. Devroye, L. and A. Naderisamani ( 1980 ). A binomial variate generator, Tech. Rep., School of Computer Science, McGill University, Montreal, Canada.

    Google Scholar 

  • Dieter, U. (1982). An alternate proof for the representation of discrete distributions by equiprobable mixtures, J. Appl. Prob., 19, 869–872.

    Article  Google Scholar 

  • Feller, W. (1971). An Introduction to Probability Theory and Its Applications, Volume II, 2nd ed., Wiley, New York.

    Google Scholar 

  • Fisher, R.A. and E.A. Cornish (1960). The percentile points of distributions having known cumulants, Technometrics, 2, 209–225.

    Article  Google Scholar 

  • Fishman, G.S. (1976). Sampling from the gamma distribution on a computer, Comm. ACM, 19, 407–409.

    Article  Google Scholar 

  • Fishman, G.S. (1978). Principles of Discrete Event Simulation, Wiley, New York.

    Google Scholar 

  • Fishman, G.S. (1979). Sampling from the binomial distribution on a computer, J. Amer. Statist. Assoc., 74, 418–423.

    Google Scholar 

  • Fishman, G.S. and L.R. Moore (1984). Sampling from a discrete distribution while preserving monotonicity, Amer. Statist., 38, 219–223.

    Google Scholar 

  • Fishman, G.S. and L.S. Yarberry (1993). Generating a sample from a k-cell table with changing probabilities in O(log2 k) time, ACM Trans. Math. Software, 19, 257–261.

    Article  Google Scholar 

  • Hastings, C., Jr. (1955). Approximations for Digital Computers, Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Hoeffding, W. (1940). Masstabinvariante Korrelations-theorie, Schriften des Mathematischen Instituts und des Instituts fur Angewandte Mathematik der Universität Berlin, 5, 197–233.

    Google Scholar 

  • Hoeffding, W. (1963). Probability inequalities for sums of bounded random variables, J. Amer. Statist. Assoc., 58, 13–29.

    Article  Google Scholar 

  • Hörmann, W. and G. Derflinger (1993). A portable random number generator well suited for the rejection method, ACM Trans. Math. Software, 19, 489–495.

    Article  Google Scholar 

  • Kachitvichyanukul, V. and B. Schmeiser (1985). Computer generation of hypergeometric random variates, J. Statist. Comp. Simul., 22, 127–145.

    Article  Google Scholar 

  • Kachitvichyanukul, V. and B. Schmeiser (1988). Binomial random variate generation, Comm. ACM, 31, 216–222.

    Article  Google Scholar 

  • Kinderman, A.J. and J.F. Monahan (1977). Computer generation of random variables using the ratio of uniform deviates, ACM Trans. Math. Software, 3, 257–260.

    Article  Google Scholar 

  • Kinderman, A.J. and J.F. Monahan (1980). New methods for generating Student’s t and Gamma variables, Computing, 25, 369–377.

    Article  Google Scholar 

  • Knuth, D. (1973). The Art of Computer Programming: Sorting and Searching, Addison-Wesley, Reading, MA.

    Google Scholar 

  • Kronmal, R.A. and A.V. Peterson, Jr. (1979). On the alias method for generating random variables from a discrete distribution, Amer. Statist., 4, 214–218.

    Google Scholar 

  • Kulkarni, V.G. (1990). Generating random combinatorial objects, J. Algorithms, 11, 185–207.

    Article  Google Scholar 

  • Lurie, D. and H.O. Hartley (1972). Machine-generation of order statistics for Monte Carlo computations, Amer. Statist., 26, 26–27.

    Google Scholar 

  • MacLaren, M.D., G. Marsaglia and T.A. Bray (1964). A fast procedure for generating exponential random variables, Comm. ACM, 7, 298–300.

    Article  Google Scholar 

  • Marsaglia, G. (1977). The squeeze method for generating gamma variates, Comput. and Math. with Appl., 3, 321–325.

    Article  Google Scholar 

  • Marsaglia, G. (1984). The exact-approximation method for generating random variables in a computer, J. Amer. Statist. Assoc., 79, 218–221.

    Article  Google Scholar 

  • Marsaglia, G., K. Ananthanarayanan and N.J. Paul (1976). Improvements on fast methods for generating normal random variables, Inf. Proc. Letters, 5, 27–30.

    Article  Google Scholar 

  • Marsaglia, G., M.D. MacLaren and T.A. Bray (1964). A fast procedure for generating normal random variables, Comm. ACM, 7, 4–10.

    Article  Google Scholar 

  • Minh, D.L. (1988). Generating gamma variates, ACM Trans. Math. Software, 14, 261–266. Pinkham, R.S. (1987). An efficient algorithm for drawing a simple random sample, Appl. Statist., 36, 370–372.

    Google Scholar 

  • Ross, S. and Z. Schechner (1986). Simulation uses of the exponential distribution, Stochastic Programming, F. Archetti, G. Di Pillo and M. Lucertini eds., in Lecture Notes in Control and Information Sciences, Springer-Verlag, New York, Vol. 76, pp. 41–52.

    Google Scholar 

  • Schmeiser, B.W. and A.J.G. Babu (1980). Beta variate generation via exponential majorizing functions, Oper. Res., 28, 917–926.

    Article  Google Scholar 

  • Schmeiser, B.W. and A.J.G. Babu (1980). Errata: Oper. Res., 31, 802.

    Google Scholar 

  • Schmeiser, B.W. and R. Lal (1980). Squeeze methods for generating gamma variates, J. Amer. Statist. Assoc., 75, 679–682.

    Article  Google Scholar 

  • Schmeiser, B.W. and V. Kachitvichyanukul (1981). Poisson random variate generation, Res. Memo. 81–84, School of Industrial Engineering, Purdue University, Lafayette, IN. Schreider, Y.A. (1964). Method of Statistical Testing, Elsevier, Amsterdam.

    Google Scholar 

  • Schucany, W.R. (1972). Order statistics in simulation, J. Statist. Comput. and Simul., 1, 281–286.

    Article  Google Scholar 

  • Stadlober, E. (1982). Generating Student’s t variates by a modified rejection method, Probability and Statistical Inference, W. Grossmann, G. Ch. Plug and W. Wertz eds., Reidel, Dordrecht, Holland, pp. 349–360.

    Google Scholar 

  • Stadlober, E. (1989). Sampling from Poisson, binomial and hypergeometric distributions: ratio of uniforms as a simple and fast alternative, Math. Statist. Sektion 303, Forschungsgesellschaft Joanneum, Graz, Austria, 93 pp.

    Google Scholar 

  • Stadlober, E. (1991). Binomial random variate generation: a method based on ratio of uniforms, The Frontiers of Statistical Computation, Simulation, and Modeling, Volume 1, P.R. Nelson, E.J. Dudewicz, A. Öztürk, E.C. van der Meulen eds., American Sciences Press, Syracuse, NY, pp. 93–112.

    Google Scholar 

  • Tocher, K.D. (1963). The Art of Simulation, Van Nostrand, New York.

    Google Scholar 

  • von Neumann, J. (1951). Various techniques used in connection with random digits, Monte Carlo Method, Applied Mathematics Series 12, National Bureau of Standards, Washington, D.C.

    Google Scholar 

  • Walker, A.J. (1974). New fast method for generating discrete random numbers with arbitrary frequency distributions, Electronic Letters, 10, 127–128.

    Article  Google Scholar 

  • Walker, A.J. (1977). An efficient method for generating discrete random variables with general distributions, ACM Trans. Math. Software, 3, 253–256.

    Article  Google Scholar 

  • Wilks, S.S. (1962). Mathematical Statistics, Wiley, New York.

    Google Scholar 

  • Wong, C.K. and M.C. Easton (1980). An efficient method for weighted sampling without replacement, SIAM J. Comput., 9, 111–113.

    Article  Google Scholar 

  • Zechner, H. and E. Stadlober (1993). Generating Beta variates via patchwork rejection, Computing, 50, 1–18.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fishman, G.S. (1996). Generating Samples. In: Monte Carlo. Springer Series in Operations Research. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-2553-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2553-7_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-2847-4

  • Online ISBN: 978-1-4757-2553-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics