Skip to main content

Introduction

  • Chapter
Monte Carlo

Part of the book series: Springer Series in Operations Research ((ORFE))

Abstract

The Monte Carlo method provides approximate solutions to a variety of mathematical problems by performing statistical sampling experiments on a computer. Remarkably, the method applies to problems with absolutely no probabilistic content as well as to those with inherent probabilistic structure. This alone does not give the Monte Carlo method an advantage over other methods of approximation. However, among all numerical methods that rely on n-point evaluations in m-dimensional space to produce an approximate solution, the Monte Carlo method has absolute error of estimate that decreases as n −l/2 whereas, in the absence of exploitable special structure, all others have errors that decrease as n −l/m at best. This property gives the Monte Carlo method a considerable edge in computational efficiency as m, the size of the problem, increases. Combinatorial settings illustrate this property especially well. Whereas the exact solution to a combinatorial problem with m elements often has computational cost that increases exponentially or superexponentially with m, the Monte Carlo method. frequently provides an estimated solution with tolerable error at a cost that increases no faster than as a polynomial in m.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Broder, A.Z. (1986). How hard is it to marry at random? (on the approximation of the permanent), Proc. Eighteenth ACM Symposium on Theory of Computing, 50–58. Erratum in Proc. Twentieth ACM Symposium on Theory of Computing, 1988, p. 551.

    Google Scholar 

  • Courant, R., K. Friedrichs, and H. Lewy (1928). Uber die Partiellen Differenzengleichungen der Matematischen Physik, Math. Annalen, 100, 32–74; translated into English by P. Fox (1956) NYO-7689, ABC Computing Facility, Institute of Mathematical Sciences, New York University.

    Google Scholar 

  • Dyer, M., A. Frieze, and R. Kannan (1989). A random polynomial time algorithm for approximating the volume of convex bodies, Proc. Twenty-First ACM Symposium on Theory of Computing, 375–381; also in Research Report 88–40, Department of Mathematics, Carnegie-Mellon University, Pittsburgh, PA.

    Google Scholar 

  • Feller, W. (1968). An Introduction to Probability Theory and Its Applications, vol. 1, third ed., John Wiley, New York.

    Google Scholar 

  • Jerrum, M., and A. Sinclair (1988). Conductance and the rapid mixing property for Markov chains: The approximation of the permanent resolved, Proc. Twentieth ACM Symposium on Theory of Computing, 235–244.

    Google Scholar 

  • Karp, R.M. (1985). Monte-Carlo algorithms for the planar multiterminal network reliability problem, J. Complexity, 1, 45–64.

    Article  Google Scholar 

  • Kolmogorov, A. (1931). Uber die Analytischen Methoden in der Wahrscheinlichkeitsrechnung, Math. Annalen, 104, 415–458.

    Article  Google Scholar 

  • National Bureau of Standards (1951). Monte Carlo Method, A.S. Housholder ed., Applied Mathematics Series 12.

    Google Scholar 

  • Park, S.K., and K.W. Miller (1988). Random number generators: Good ones are hard to find, Comm. ACM, 31, 1192–1201.

    Article  Google Scholar 

  • Petrowsky, I. (1933). Über das Irrfahrtproblem, Math. Annalen, 109, 425–444.

    Article  Google Scholar 

  • Rayleigh, Lord J.W.S. (1899). On James Bernoulli’s theorem in probabilities, Phil. Mag., 47, 246–251.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fishman, G.S. (1996). Introduction. In: Monte Carlo. Springer Series in Operations Research. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-2553-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2553-7_1

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-2847-4

  • Online ISBN: 978-1-4757-2553-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics