Skip to main content

Synthesis and Layout for Analog and Mixed-Signal ICs in the ACACIA System

  • Chapter

Abstract

An increasing number of ICs require some core of analog circuitry for interfacing, wireless communication, multimedia data handling (speech, vision), etc. Despite substantial progress on CAD tools, these analog subsystems are still mostly designed by hand. This paper surveys progress on one proposed solution to this problem: a top-to-bottom tool suite for analog and mixed-signal designs under development at Carnegie Mellon University, called ACACIA. The principal focus of the ACACIA system is synthesis: of circuits and layouts, from cells to systems. We describe here briefly the core tools in ACACIA, focusing on cell-level circuit synthesis and layout, and mixed-signal system-level floorplanning, routing, and power grid design.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Nye, D.C. Riley, A. Sangiovanni-Vincentelli, and A.L. Tits, “DELIGHT.SPICE: an optimization-based system for the design of integrated circuits,” IEEE Trans. CAD, vol. 7, no. 4, Apr. 1988.

    Google Scholar 

  2. M.G.R. Degrauwe, et al., “Towards an analog system design environment,” IEEE JSSC, vol. 24, no. 3, Jun. 1989.

    Google Scholar 

  3. R. Harjani, R.A. Rutenbar, and L.R. Carley, “OASYS: a framework for analog circuit synthesis,” IEEE Trans. CAD, vol. 8, Dec. 1989.

    Google Scholar 

  4. H.Y. Koh, C.H. Sequin, and P.R. Gray, “OPASYN: a compiler for MOS operational amplifiers,” IEEE Trans. CAD, vol. 9, no. 2, Feb. 1990.

    Google Scholar 

  5. G. Gielen, et al, “Analog circuit design optimization based on symbolic simulation and simulated annealing,” IEEE JSSC, vol. sc-25, no. 3, Jun. 1990.

    Google Scholar 

  6. J.P. Harvey, M.I. Elmasry, and B. Leung, “STAIC: an interactive framework for synthesizing CMOS and BiCMOS analog circuits,” IEEE Trans, CAD, vol. 11, no. 11, Nov. 1992.

    Google Scholar 

  7. G. Gielen and W. M. Sansen, Symbolic Analysis for Automated Design of Analog Integrated Circuits, Norweü, MA: Kluwer Academic Publishers, 1991.

    Book  Google Scholar 

  8. F. V. Fernandez, et al., “Interactive ac modeling and characterization of analog circuits via symbolic analysis,” Kluwer Journal on Analog ICs and Signal Processing, vol. 1, 1991.

    Google Scholar 

  9. P. Wambacq, et al., “Efficient symbolic computation of approximated small-signal characteristics of analog integrated circuits,” IEEE JSSC, vol. 30, no. 3, Mar. 1995.

    Google Scholar 

  10. Q. Yu and C. Sechen, “Approximate symbolic analysis of large analog integrated circuits,” Proc. IEEE ICCAD, pp. 664–671, Nov. 1994.

    Google Scholar 

  11. G. Gielen, P. Wambacq, W. M. Sansen, “Symbolic analysis methods and applications for analog circuits: a tutorial overview,” Proc, IEEE, vol. 82, Feb. 1994.

    Google Scholar 

  12. P. C. Maulik, L. R. Carley, and R. A. Rutenbar, “A mixed-integer nonlinear programming approach to analog circuit synthesis,” Proc. ACM/IEEE DAC, June 1992.

    Google Scholar 

  13. E. Ochotta, R.A. Rutenbar and L.R. Carley, “Equation-free synthesis of high-performance linear analog circuits,” Advanced Research in VLSI and Parallel Systems, Proc. of the 1992 Brown/MIT Conference, March 1992.

    Google Scholar 

  14. E.S. Ochotta, L.R. Carley, and R.A. Rutenbar, “Analog circuit synthesis for large, realistic cells: Designing a pipelined A/D converter with ASTRX/ OBLX,” Proc. IEEE CICC, May 1994.

    Google Scholar 

  15. E.S. Ochotta, L.R. Carley, and R.A. Rutenbar, “ASTRX/OBLX: Tools for rapid synthesis of high-performance analog circuits,” Proc. ACM/IEEE DAC, June 1994.

    Google Scholar 

  16. F. Medeiro, et al., “A statistical optimization-based approach for automated sizing of analog cells,” Proc. IEEE ICCAD, Nov. 1994.

    Google Scholar 

  17. B. Sheu, et al., “BSIM: Berkeley short-channel IGFET model for MOS transistors,” IEEE JSSC, vol. sc-22, no. 4, Aug. 1987.

    Google Scholar 

  18. L. T. Pillage and R. A. Rohrer, “Asymptotic waveform evaluation for timing analysis”, IEEE Trans. CAD, vol. CAD-9, no. 4, April 1990.

    Google Scholar 

  19. S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, “Optimization by simulated annealing,” Science, vol. 220, no. 4598, 13 May 1983.

    Google Scholar 

  20. R. A. Rutenbar, “Simulated annealing algorithms: An overview”, IEEE Circuits and Devices, vol. 5, no. 1, Jan. 1989.

    Google Scholar 

  21. J. Lam, “An efficient simulated annealing schedule,” Ph.D. Dissertation, Yale University, Sept. 1988.

    Google Scholar 

  22. K. Nakamura and L.R. Carley, “An enhanced fully differential folded-cascode op amp,” IEEE JSSC, vol. 27, no. 4, Apr. 1992.

    Google Scholar 

  23. B. Basaran, R. A. Rutenbar and L. R. Carley, “Latchup-Aware Placement and Parasitic-Bounded Routing of Custom Analog Cells”, Proc. IEEE ICCAD, Nov. 1993.

    Google Scholar 

  24. S. Mitra, R. A. Rutenbar, L. R. Carley, and D.J. Allstot, “Substrate-aware mixed-signal macrocell placement in WRIGHT”, IEEE JSSC, vol. 30, no. 3, pp. 269–278, Mar. 1995.

    Google Scholar 

  25. B. R. Stanisic, N. K. Verghese, R. A. Rutenbar, L. R. Carley and D. J. Allstot, “Addressing substrate coupling in mixed-mode ICs: simulation and power distribution synthesis”, IEEE JSSC, vol. 29, no. 3, Mar. 1994.

    Google Scholar 

  26. B.R. Stanisic, R. A. Rutenbar and L. R. Carley, “Mixed-signal noise-decoupling via simultaneous power distribution design and cell customization in RAIL”, IEEE JSSC, vol. 30, no. 3, Mar. 1995.

    Google Scholar 

  27. S. Mitra, S. K. Nag, R. A. Rutenbar and L. R. Carley, “System-level routing of mixed-signal ASICs in WREN”, Proc. IEEE ICCAD, Nov. 1992.

    Google Scholar 

  28. J. M. Cohn, D. J. Garrod, R. A. Rutenbar and L. R. Carley, “KOAN/ANA-GRAM II: New tools for device-level analog placement and routing”, IEEE JSSC, Vol. 26, No. 3, March 1991.

    Google Scholar 

  29. L. R. Carley and T. Mukherjee, “High-speed low-power integrating CMOS sample-and-hold amplifier architecture,” to appear in Proc. IEEE CICC, May 1995.

    Google Scholar 

  30. D. W. Jepsen and C. D. Gelatt, Jr., “Macro placement by Monte Carlo annealing”, Proc. IEEE ICCD, Nov. 1984.

    Google Scholar 

  31. W. Swartz and C. Sechen, “New algorithms for the placement and routing of macroczlls,” Proc. IEEE ICCAD, Nov. 1990.

    Google Scholar 

  32. N. K. Verghese, D. J. Allstot and S. Masui, “Rapid simulation of substrate coupling effects in mixed-mode ICs”, Proc. IEEE CICC, May 1993.

    Google Scholar 

  33. N. Verghese, D.J. Allstot and M. Wolfe, “Fast parasitic extraction for substrate coupling in mixed-signal ICs,” Proc. IEEE CICC, May 1995.

    Google Scholar 

  34. S. Mitra, R. A. Rutenbar, L. R. Carley, and D.J. Allstot, “A methodology for rapid estimation of substrate-coupled switching noise”, to appear Proc. IEEE CICC, May 1995.

    Google Scholar 

  35. T. Schmerbeck, R. Richetta and L. Smith, “A 27 MHz mixed analog/digital recording channel DSP using partial response signalling with maximum likelihood detection,” in Tech. Digest IEEE ISSCC, Feb. 1991.

    Google Scholar 

  36. U. Chowdhury and A. Sangiovanni-Vincentelli, “Constraint generation for routing analog circuits”, Proc. ACM/IEEE DAC, June 1990.

    Google Scholar 

  37. H. H. Chen and E. Kuh, “Glitter: A gridless variable width channel router”, IEEE Trans. CAD, vol. CAD-5, no. 4, Oct 1986.

    Google Scholar 

  38. T. Mukherjee, L.R. Carley and R.A. Rutenbar, “Synthesis of manufacturable analog circuits,” Proc. IEEE ICCAD, pp. 586–593, Nov. 1994.

    Google Scholar 

  39. P.C. Maulik, L.R. Carley and R.A. Rutenbar, “Integer programming-based topology selection of cell-level analog circuits,” IEEE Trans. CAD, vol. 14, no. 4, April 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Rutenbar, R.A. et al. (1996). Synthesis and Layout for Analog and Mixed-Signal ICs in the ACACIA System. In: Huijsing, J.H., van de Plassche, R.J., Sansen, W.M.C. (eds) Analog Circuit Design. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-2462-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2462-2_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-5157-1

  • Online ISBN: 978-1-4757-2462-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics