Skip to main content

Physical, Chemical, and Microbiological Characteristics of Dehydrated Foods

  • Chapter

Part of the book series: Dehydration of Foods ((FSES))

Abstract

The preservation of the initial cellular structure of the material being dried is, in most cases, a function of the process applied to the food. This consideration applies not only to drying but also to blanching and freezing. In the removal of water from high-moisture containing prod­ucts such as fruits and vegetables, it is important to remember that cell membranes may or may not been dam­aged during processing (Le Maguer, 1987).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abrams, D. S. and Prausnitz, J. M. 1975. Statistical thermodynamics of liquid mixtures: a new expression for the excess Gibbs energy of partly or completely miscible systems. AICHE J. 21(1): 116–128.

    Article  CAS  Google Scholar 

  • Allen, G. 1993. A history of the glassy state. In The Glassy State in Foods, edited by J. M. V. Blanshard and P. J. Lillford. Nottingham University Press, Loughborough, Leicestershire, UK.

    Google Scholar 

  • Beuchat, L. R. 1983. Influence of water activity on growth, metabolic activities and survival of yeasts and molds. J. Food Prot. 46(2): 135–141.

    Google Scholar 

  • Bone, D. P. 1987. Practical applications of water activity and moisture relations in foods. In Water activity: Theory and Applications to Food, edited by L. B. Rockland and L. R. Beuchat. Marcel Dekker, New York.

    Google Scholar 

  • Boquet, R., Chirife, J., and Iglesias, H.A. 1980. Technical note: on the equivalence of isotherm equations. J. Food Technol. 15: 345–349.

    Article  Google Scholar 

  • Bromley, L. A. 1973. Thermodynamic properties of strong electrolytes in aqueous solutions. AICHE J. 19(2): 313–320.

    Article  CAS  Google Scholar 

  • Bruin, S. and Luyden, K. Ch. A. M. 1980. Drying of food materials. In Advances in Drying, Vol. 1, edited by A. S. Mujumdar. Hemisphere Publishing, New York.

    Google Scholar 

  • Cheftel, J. C., Cuq, J. L. and Lorient, D. 1985. Amino acids, peptides and proteins. In Food Chemistry, Second edition, edited by O. R. Fennema. Marcel Dekker, New York.

    Google Scholar 

  • Chirife, J. 1987. Predicción de la actividad de agua en alimentes. In Conservación de Alimentos de alta humedad per métodos combinados basados en la reducción de la actividad de agua. Programa de Ciencia y Tecnologia para el Desarrollo, V-Centenario CYTED-D, México.

    Google Scholar 

  • Chirife, J. and Buera, M. P. 1994. Water activity, glass transition and microbial stability in concentrate/semimoist food systems. J. Food Sci. 59(5): 921–927.

    Article  CAS  Google Scholar 

  • Chirife, J. and Favetto, G. J. 1992. Fundamental aspects of food preservation by combined methods. Int. Union of Food Sci. and Technol.—CYTED D—Univ. de las Americas, Puebla, México.

    Google Scholar 

  • Chirife, J., Ferro-Fontén, C., and Benmergui, E. A. 1980. The prediction of water activity in aqueous solutions in connection with intermediate moisture foods. IV. A,,, prediction in aqueous non-electrolyte solutions. J. Food. Technol. 15: 59–70.

    Article  CAS  Google Scholar 

  • Christensen, C. Sander, B., Fredenslund, A., and Basmussen, P. 1983. Towards the extention of UNIFAC to mixtures with electrolytes. Fluid Phase Equilibria 13: 297–309.

    Article  CAS  Google Scholar 

  • Chung, D. S. and Pfost, H. B. 1967a. Adsorption and desorption of water vapor by cereal grains and their products. I. Heat and free energy changes of adsorption and desorption. Trans. ASAE 10: 549–551.

    Google Scholar 

  • Chung, D. S. and Pfost, H. B. 1967b. Adsorption and desorption of water vapor by cereal grains and their products. II. Development of the general isotherm equation. Trans. ASAE 10: 552–555.

    Google Scholar 

  • Coumans, W. J., Kerkhof, Piet J. A. M., and Bruin, S. 1994. Theoretical and practical aspects of aroma retention in spray drying and freeze-drying. Drying Technol. 12: 99–149.

    Article  CAS  Google Scholar 

  • De Gois, V. A. and Cal-Vidal, J. 1986. Water sorption characteristics of freeze-dried papaya in powdered and granular forms. Can. Inst. Food Sci. Technol. J. 19(1): 7–11.

    Google Scholar 

  • de Man, J. M. 1982. Principles of Food Chemistry. AVI Publishing, Westport, CT.

    Google Scholar 

  • Erbersdobler, H. F. 1985. Loss of nutritive value on drying. In Concentration and Drying of Foods, edited by D. MacCarthy. Elsevier Applied Science Publishers, New York.

    Google Scholar 

  • Ferro-Fontân, C., Benmergui, E. A., and Chirife, J. 1980. The prediction of water activity in aqueous solutions in connection with intermediate moisture foods. III. A,,, prediction in multicomponent strong electrolyte aqueous solutions. J. Food. Technol. 15: 47–58.

    Article  Google Scholar 

  • Ferro-Fontân, C. and Chirife, J. 1981. Technical Note: a refinement of Ross’s equation for predicting the water activity of non-electrolyte mixtures. J. Food. Technol. 16: 219–221.

    Article  Google Scholar 

  • Ferro-Fontân, C., Chirife, J., and Boquet, R. 1981. Water activity in multicomponent non-electrolyte solutions. J. Food. Technol. 18: 553–559.

    Google Scholar 

  • FPI, 1982. Alimentos Enlatados. Principios del Control del Procesamiento Térmico, Acidificación y Evaluación del Cierre de los Envases, Second edition. Spanish version by N. Diaz and J. R. Cruz Cay. The Food Processor Institute, Washington, D.C.

    Google Scholar 

  • Fredenslund, A., Jones, R. L., and Prausnitz, J. M. 1975. Group-contribution estimation of activity coefficients in nonideal liquid mixtures. AIChE J. 21(6): 1086–1099.

    Article  CAS  Google Scholar 

  • Henderson, S. M. 1952. A basic concept of equilibrium moisture. Agric. Eng. 33: 29–32.

    Google Scholar 

  • Iglesias, H. A. and Chirife, J. 1978. An empirical equation for fitting water sorption isotherms of fruit and related products. Can. Inst. Food Sci. Technol. J. 11(1): 12–15.

    Google Scholar 

  • Jowitt, R., Escher, E, Hallstrom, B., Meffert, H. E Th., Spiess, W., and Vos, G. 1981. Physical Properties of Foods. Applied Science Publishers, London, UK.

    Google Scholar 

  • Kapsalis, J. G. 1987. Influences of hysteresis and temperature on moisture sorption isotherms. In Water Activity: Theory and Applications to Food, edited by L. B. Rockland and L. R. Beuchat. Marcel Dekker, New York.

    Google Scholar 

  • Karel, M. 1975a. Water activity and food preservation. In Principle of Food Science. Part II: Physical Principles of Food Preservation, edited by M. Karel, O. R. Fennema, and D. B. Lund. Marcel Dekker, New York.

    Google Scholar 

  • Karel, M. 1975b. Freeze dehydration of foods. In Principle of Food Science. Part II: Physical Principles of Food Preservation, edited by M. Karel, O. R. Fennema, and D. B. Lund. Marcel Dekker, New York.

    Google Scholar 

  • Karel, M. 1975c. Dehydration of foods. In Principle of Food Science. Part II: Physical Principles of Food Preservation, edited by M. Karel, O. R. Fe; nema, and D. B. Lund. Marcel Dekker, New York.

    Google Scholar 

  • Karel, M. 1985. Control of lipid oxidation in dried foods. In Concentration and Drying of Foods, edited by D. MacCarthy. Elsevier Applied Science Publishers, New York.

    Google Scholar 

  • Karel, M., Buera, M. P., and Roos, Y. 1993. Effect of glass transition on processing and storage. In The Glassy State in Foods, edited by J. M. V. Blanshard and P. J. Lillford. Nottingham University Press, Loughborough, Leicestershire, UK.

    Google Scholar 

  • Kitic, D., Pereira, D. C., Favetto, G., Resnik, S., and Chirife, J. 1986. Theoretical prediction of the water activity of standard saturated salt solutions at various temperatures. J. Food Sci. 51(4): 1037–1040.

    Article  CAS  Google Scholar 

  • Kumar, M. 1974. Water vapor adsorption on whole corn flour, degermed corn flour, and germ flour. J. Food Technol. 9: 433–444.

    Article  Google Scholar 

  • Labuza, T. P. 1968. Sorption phenomena in foods. Food Technol. 22(3): 263–266.

    CAS  Google Scholar 

  • Labuza, T. P., McNally, L., Gallaghe, D., Hawkes, J., and Hurtado, F. 1972. Stability of intermediate moisture foods. 1. Lipid Oxidation. J. Food Sci. 37: 154–159.

    Article  CAS  Google Scholar 

  • Lang, K. W. and Steinberg, M. P. 1981. Predicting water activity from 0.30 to 0.95 of a multicomponent food formulation. J. Food Sci. 46: 670–672, 680.

    Article  Google Scholar 

  • Le Maguer, M. 1987. Mechanics and influence of water binding on water activity. In Water Activity: Theory and Applications to Food, edited by L. B. Rockland and L. R. Beuchat. Marcel Dekker, New York.

    Google Scholar 

  • Leung, H. K. 1986. Water activity and other colligative properties of foods. In Physical and Chemical Properties of Foods, edited by M. R. Okos. American Society of Agricultural Engineers, St. Joseph, MI.

    Google Scholar 

  • Leung, H. K. 1987. Influence of water activity on chemical reactivity. In Water Activity: Theory and Applications to Food, edited by L. B. Rockland and L. R. Beuchat. Marcel Dekker, New York.

    Google Scholar 

  • Lima, A. W. O. and Cal-Vidal, J. 1983. Hygroscopic behavior of freeze dried bananas. J. Food Technol. 18: 687–696.

    Article  Google Scholar 

  • Lindsay, R. C. 1985. Food Additives. In Food Chemistry, Second edition, edited by O. R. Fennema. Marcel Dekker, New York.

    Google Scholar 

  • Money, R. W. and Born, R. 1951. Equilibrium humidity of sugar solutions. J. Sci. Food Agric. 2: 180–185.

    Article  CAS  Google Scholar 

  • Monsalve-Gonzalez, A., Barbosa-Cânovas, G., and Cavalieri, R. P. 1993a. Mass transfer and textural changes during processing of apples by combined methods. J. Food Sci. 58(5): 1118–1124

    Article  CAS  Google Scholar 

  • Monsalve-Gonzalez, A., Barbosa-Cânovas, G. V., Cavalieri, R. P., McEvily, A. J., and Iyengan, R. 1993b. Control of browning during storage of apple slices preserved by combined methods. 4-Hexylresorcinol as anti-browning agent. J. Food Sci. 58(4): 797–800, 826.

    Article  Google Scholar 

  • Nawar, W. W. 1985. Lipids. In Food Chemistry, Second edition, edited by O. R. Fennema. Marcel Dekker, New York.

    Google Scholar 

  • Norrish, R. S. 1966. An equation for the activity coefficients and equilibrium relative humidities of water in confectionery syrups. J. Food. Technol. 1: 25–39.

    Article  CAS  Google Scholar 

  • Okos, M. R., Narsimhan, G., Singh, R. K., and Weitnauer, A. C. 1992. Food dehydration. In Handbook of Food Engineering, edited by D. R. Heldman and D. B. Lund. Marcel Dekker, New York.

    Google Scholar 

  • Pitzer, K. S. 1973. Thermodynamics of electrolytes. I. Theoretical basis and general equations. J. Phys. Chem. 77(2): 268–277.

    Article  CAS  Google Scholar 

  • Pitzer, K. S. 1979. Theory: ion interaction approach. In Activity Coefficients in Electrolyte Solutions, Vol. I, edited by R. M. Pytkowicz. CRC Press, Boca Raton, FL.

    Google Scholar 

  • Pitzer, K. S. and Kim, J. J. 1974. Thermodynamics of electrolytes. IV. Activity and osmotic coefficients for mixed electrolytes. J. Am. Chem. Soc. 96: 5701–5707.

    Article  CAS  Google Scholar 

  • Pitzer, K. S. and Mayorga, G. 1973. Thermodynamics of electrolytes. II. Activity and osmotic coefficients for strong electrolytes with one or both ions univalent. J. Phys. Chem. 77(19): 2300–2308.

    Article  CAS  Google Scholar 

  • Rockland, L.B. 1960. Saturated salt solutions for static control of relative humidity between 5 and 40 °C. Anal. Chem. 32(9): 1375–1377.

    Article  CAS  Google Scholar 

  • Rockland, L. B. 1969. Water activity and storage stability. Food Technol. 23(10): 11–17.

    Google Scholar 

  • Rockland, L. B. and Nishi, S. K. 1980. Influence of water activity on food product quality and stability. Food Technol. 34(4): 42–51.

    CAS  Google Scholar 

  • Roman, G. N., Urbicain, M. J., and Rotstein, E. 1982. Moisture equilibrium in apples at several temperatures: experimental data and theoretical considerations. J. Food Sci. 47: 1484–1488.

    Article  CAS  Google Scholar 

  • Roos, Y. H. 1992. Phase transition and transformations in food systems. In Handbook of Food Engineering, edited by D. R. Heldman and D. B. Lund. Marcel Dekker, New York.

    Google Scholar 

  • Salwin, H. and Slawson, V. 1959. Moisture transfer in combinations of dehydrated foods. Food Technol. 13: 715–718.

    Google Scholar 

  • Scorza, Q. C., Chirife, J., Cattaneo, P., Vigo, M. S., Bertoni, M. H., and Sarraih, P. 1981. Factores que condicionan el crecimiento microbiano en alimentos de humedad intermedia. La alimentación Latinoamericana 127: 62–67.

    Google Scholar 

  • Slade, L. and Levine, H. 1991. Beyond water activity: recent advances based on an alternative approach to the assesment of food quality and safety. Crit. Rev. Food Sci. Nutr. 30(2,3): 115–360.

    Article  CAS  Google Scholar 

  • Slade, L. and Levine, H. 1993. Glass transitions and water—food structure interactions. Personal communication.

    Google Scholar 

  • Smith, P. R. 1947. The sorption of water vapor by high polymers. J. Am. Chem. Soc. 69: 646–651.

    Article  CAS  Google Scholar 

  • Stokes, R. H. 1979. Thermodynamics of solutions. In Activity Coefficients in Electrolyte Solutions, Vol. I, edited by R. M. Pytkowicz. CRC Press, Boca Raton, FL.

    Google Scholar 

  • Tant, M. R. and Wilkes, G. L. 1981. An overview of the nonequilibrium behavior of polymer glasses. Polym. Eng. Sci. 21: 874–895.

    Article  CAS  Google Scholar 

  • Teng, T. T. and Seow, C. C. 1981. A comparative study of methods for prediction of water activity of multicomponent aqueous solutions. J. Food. Technol. 16: 409–419.

    Article  CAS  Google Scholar 

  • Toledo, R. T. 1991. Fundamentals of Food Process Engineering, Second edition. Van Nostrand Reinhold, New York.

    Book  Google Scholar 

  • Troller, J. A. 1987. Adaptation and growth of microorganisms in environments with reduced water activity. In Water Activity: Theory and Applications to Food, edited by L. B. Rockland and L. R. Beuchat. Marcel Dekker, New York.

    Google Scholar 

  • Troller, J. A. and Christian, J. H. B. 1978. Water Activity in Food. Academic Press, New York.

    Google Scholar 

  • Van den Berg, C. 1985. Water activity. In Concentration and Drying of Foods, edited by D. MacCarthy. Elsevier Applied Science Publishers, New York.

    Google Scholar 

  • Van den Berg, C. and Bruin, S. 1981. Water activity and its estimation in food systems: theoretical aspects. In Water Activity: Influences on food quality, edited by L. B. Rockland and G. F. Steward. Academic Press, New York.

    Google Scholar 

  • Van Ness, H. C. and Abbott, M. M. 1982. Classical thermodynamics of non-electrolyte solutions with applications to phase equilibria. McGraw-Hill Chemical Eng. Series. McGraw-Hill, New York.

    Google Scholar 

  • Vega-Mercado, H. and Barbosa-Cânovas, G. V. 1993a. Comparison of moisture sorption isotherm models in freeze-dried pineapple pulp. J. Agric. Univ. Puerto Rico 77(3–4): 113–128.

    Google Scholar 

  • Vega-Mercado, H. and Barbosa-Cânovas, G. V. 1993b. Heat of sorption and free energy change of freeze-dried pineapple pulp. J. Agric. Univ. Puerto Rico 77(3–4): 101–112.

    Google Scholar 

  • Villar, T. and Silvera, C. 1987. Alimentos de Humedad Intermedia. Universidad de la República, Facultad de Química, Montevideo, Uruguay.

    Google Scholar 

  • Whistler, R. L. and Daniel, J. R. 1985. Carbohydrates. In Food Chemistry, Second edition, edited by O.R. Fennema. Marcel Dekker, New York.

    Google Scholar 

  • Williams, M. L., Landel, R. F., and Ferry, J. D. 1955. The temperature dependence of relaxation mechanisms in amorphous polymers and other glass forming liquids. J. Am. Chem. Soc. 77: 3701–3707.

    Article  CAS  Google Scholar 

  • Wolf, W., Spiess, W., Jung, G., Weisser, H., Bizot, H., and Duckworth, R.B. 1984. The water vapour sorption isotherms of microcrystalline cellulose (MCC) and of purified potato starch. Results of a collaborative study. J. Food Eng. 3: 51–73.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Barbosa-Cánovas, G.V., Vega-Mercado, H. (1996). Physical, Chemical, and Microbiological Characteristics of Dehydrated Foods. In: Dehydration of Foods. Dehydration of Foods. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-2456-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2456-1_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-4723-9

  • Online ISBN: 978-1-4757-2456-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics