Skip to main content

Inhibition of Cytochrome P450 Enzymes

  • Chapter
Cytochrome P450

Abstract

The catalytic cycle of cytochrome P450 (see Chapters 3 and 8) traverses three steps that are particularly vulnerable to inhibition: (1) the binding of substrates, (2) the binding of molecular oxygen subsequent to the first electron transfer, and (3) the catalytic step in which the substrate is actually oxidized. This chapter focuses on inhibitors that act at one of these three steps. Inhibitors that act at other steps in the catalytic cycle, such as agents that interfere with the electron supply to the hemoprotein by accepting electrons directly from cytochrome P450 reductase,1–3 are not discussed here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rahimtula, A. D., and O’Brien, P. J., 1977, The peroxidase nature of cytochrome P450, in: Microsomes and Drug Oxidations ( V. Ullrich, I. Roots, A. Hildebrandt, R. W. Estabrook, and A. H. Conney, eds.), Pergamon Press, Elmsford, NY, pp. 210–217.

    Google Scholar 

  2. Rodrigues, A. D., Fernandez, D., Nosarzewski, M. A., Pierce, W. M., and Prough, R. A., 1991, Inhibition of hepatic microsomal cytochrome P-450 dependent monooxygenation activity by the antioxidant 3-tert-butyl-4-hydroxyanisole, Chem. Res. Toxicol. 4: 281–289.

    Article  PubMed  CAS  Google Scholar 

  3. Kharasch, E. D., Wendel, N. K., and Novak, R. F., 1987, Anthracenedione antineoplastic agent effects on drug metabolism in vitro and in vivo: Relationship between structure and mechanism of inhibition, Fundam. App!. Toxicol. 9: 18–25.

    Article  CAS  Google Scholar 

  4. Testa, B., and Jenner, P., 1981, Inhibitors of cytochrome P-450s and their mechanism of action, Drug. Metab. Rev. 12: 1–117.

    Article  PubMed  CAS  Google Scholar 

  5. Correia, M. A., and Ortiz de Montellano, P. R., 1993, Inhibitors of cytochrome P450 and possibilities for their therapeutic application, in: Frontiers in Biotransformation ( K. Ruckpaul, ed.), Akademie-Verlag, Berlin, pp. 74–146.

    Google Scholar 

  6. Murray, M., and Reidy, G. F., 1990, Selectivity in the inhibition of mammalian cytochromes P-450 by chemical agents, Pharmacol. Rev. 42: 85–101.

    PubMed  CAS  Google Scholar 

  7. Ortiz de Montellano, P. R., 1988, Suicide substrates for drug metabolizing enzymes: Mechanism and biological consequences, in: Progress in Drug Metabolism ( G. G. Gibson, ed.), Taylor & Francis, London, pp. 99–148.

    Google Scholar 

  8. Vanden Bossche, H., 1992, Inhibitors of P450-dependent steroid biosynthesis: From research to medical treatment, J. Steroid Biochem. Mol. Biol. 43: 1003–1021.

    Article  Google Scholar 

  9. Sato, A., and Nakajima, T., 1979, Dose-dependent metabolic interaction between benzene and toluene in vivo and in vitro, Toxicol. App!. Pharmacol. 48: 249–256.

    Article  CAS  Google Scholar 

  10. Watkins, R. B., 1990, Role of cytochromes P450 in drug metabolism and hepatotoxicity, Sem in. Liver Dis. 10: 235–250.

    Article  CAS  Google Scholar 

  11. Jefcoate, C. R., 1978, Measurement of substrate and inhibitor binding to microsomal cytochrome P-450 by optical-difference spectroscopy, Methods Enzymol. 52: 258–279.

    Article  PubMed  CAS  Google Scholar 

  12. Kumaki, K., Sato, M., Kon, H., and Nebert, D. W., 1978, Correlation of type I, type II, and reverse type I difference spectra with absolute changes in spin state of hepatic microsomal cytochrome P-450 iron from five mammalian species, J. Biol. Chem. 253: 1048–1058.

    PubMed  CAS  Google Scholar 

  13. Schenkman, J. B., Sligar, S. G., and Cinti, D. L., 1981, Substrate interactions with cytochrome P-450, Pharmacol. Ther. 12: 43–71.

    Article  PubMed  CAS  Google Scholar 

  14. Sligar, S. G., Cinti, D. L., Gibson, G. G., and Schenkman, J. B., 1979, Spin state control of the hepatic cytochrome P-450 redox potential, Biochem. Biophys. Res. Commun. 90: 925–932.

    Article  PubMed  CAS  Google Scholar 

  15. Guengerich, F. P., 1983, Oxidation-reduction properties of rat liver cytochromes P450 and NADPHcytochrome P-450 reductase related to catalysis in reconstituted systems, Biochemistry 22: 2811–2820.

    Article  PubMed  CAS  Google Scholar 

  16. Kitada, M., Chiba, K., Kamataki, T., and Kitagawa, H., 1977, Inhibition by cyanide of drug oxidations in rat liver microsomes, Jpn. J. Pharmacol. 27: 601–608.

    Article  PubMed  CAS  Google Scholar 

  17. Ho, B., and Castagnoli, N., 1980, Trapping of metabolically generated electrophilic species with cyanide ion: Metabolism of 1-benzylpyrrolidine, J. Med. Chem. 23: 133–139.

    Article  PubMed  CAS  Google Scholar 

  18. Sono, M., and Dawson, J. H., 1982, Formation of low spin complexes of ferric cytochrome P-450-CAM with anionic ligands: Spin state and ligand affinity comparison to myoglobin, J. Biol. Chem. 257: 5496–5502.

    PubMed  CAS  Google Scholar 

  19. Backes, W. L., Hogaboom, M., and Canady, W. J., 1982, The true hydrophobicity of microsomal cytochrome P-450 in the rat: Size dependence of the free energy of binding of a series of hydrocarbon substrates from the aqueous phase to the enzyme and to the membrane as derived from spectral binding data, J. Biol. Chem. 257: 4063–4070.

    PubMed  CAS  Google Scholar 

  20. Wink, D. A., Osawa, Y., Darbyshe, J. F., Jones, C. R., Eshenaur, S.C., and Nims, R. W., 1993, Inhibition of cytochromes P450 by nitric oxide and a nitric oxide-releasing agent, Arch, Biochem. Biophys. 300: 115–123.

    Article  CAS  Google Scholar 

  21. Khatsenko, O. G., Gross, S. S., Rifkind, A. B., and Vane, J. R., 1993, Nitric oxide is a mediator of the decrease in cytochrome P450-dependent metabolism caused by immunostimulants, Proc. Natl. Acad. Sci. USA 90: 11147–11151.

    Article  PubMed  CAS  Google Scholar 

  22. Griscavage, J. M., Fukuto, J. M., Komori, Y., and Ignarro, L. J., 1994, Nitric oxide inhibits neuronal nitric oxide synthase by interacting with the heure prosthetic group. Role of tetrahydrobiopterin in modulating the inhibitory action of nitric oxide, J. Biol. Chem. 269: 21644–21649.

    PubMed  CAS  Google Scholar 

  23. Hanson, L. K., Eaton, W. A., Sligar, S. G., Gunsalus, I. C., Gouterman, M., and Connell, C. R., 1976, Origin of the anomalous Soret spectra of carboxycytochrome P450, J. Am. Chem. Soc. 98: 2672–2674.

    Article  PubMed  CAS  Google Scholar 

  24. Omura, T., and Sato, R., 1964, The carbon monoxide-binding pigment of liver microsomes. 1. Evidence for its hemoprotein nature, J. Biol. Chem. 239: 2370–2378.

    PubMed  CAS  Google Scholar 

  25. Collman, J. R, and Sorrell, T. N., 1975, A model for the carbonyl adduct of ferrous cytochrome P-450, J. Am. Chem. Soc. 97: 4133–4134.

    Article  PubMed  CAS  Google Scholar 

  26. Leeman, T., Bonnabry, R, and Dayer, R, 1994, Selective inhibition of major drug metabolizing cytochrome P450 isozymes in human liver microsomes by carbon monoxide, Life Sci. 54: 951–956.

    Article  Google Scholar 

  27. Canick, J. A., and Ryan, K. J., 1976, Cytochrome P-450 and the aromatization of 16-alpha-hydroxytestosterone and androstenedione by human placental microsomes, Mol. Cell. Endocrinol. 6: 105–115.

    Article  PubMed  CAS  Google Scholar 

  28. Gibbons, G. F., Pullinger, C. R., and Mitropoulos, K. A., 1979, Studies on the mechanism of lanosterol 14-alpha-demethylation: A requirement for two distinct types of mixed-function-oxidase systems, Biochem. J. 183: 309–315.

    PubMed  CAS  Google Scholar 

  29. Hansson, R., and Wikvall, K., 1982, Hydroxylations in biosynthesis of bile acids: Cytochrome P-450 LM4 and 12a-hydroxylation of 513-cholestane-3a,7a-diol, Eur. J. Biochem. 125: 423–429.

    Article  PubMed  CAS  Google Scholar 

  30. Meigs, R. A., and Ryan, K. J., 1971, Enzymatic aromatization of steroids. I. Effects of oxygen and carbon monoxide on the intermediate steps of estrogen biosynthesis, J. Biol. Chem. 246: 83–87.

    PubMed  CAS  Google Scholar 

  31. Zachariah, P. K., and Juchau, M. R., 1975, Interactions of steroids with human placental cytochrome P-450 in the presence of carbon monoxide, Life Sci. 16: 1689–1692.

    Article  PubMed  CAS  Google Scholar 

  32. Tuckey, R. C., and Kamin, H., 1983, Kinetics of 02 and CO binding to adrenal cytochrome P-450scc: Effect of cholesterol, intermediates, and phosphatidylcholine vesicles, J. Biol. Chem. 258: 4232–4237.

    PubMed  CAS  Google Scholar 

  33. Cohen, G. M., and Mannering, G. J., 1972, Involvement of a hydrophobic site in the inhibition of the microsomal para-hydroxylation of aniline by alcohols, Mol. Pharmacol. 8: 383–397.

    Google Scholar 

  34. Gerber, M. C., Tejwani, G. A., Gerber, N., and Bianchine, J. R., 1985, Drug interactions with cimetidine: An update, Pharmacol. Ther. 27: 353–370.

    Article  PubMed  CAS  Google Scholar 

  35. Testa, B., 1981, Structural and electronic factors influencing the inhibition of aniline hydroxylation by alcohols and their binding to cytochrome P-450, Chem. Biol. Interact. 34: 287–300.

    Article  PubMed  CAS  Google Scholar 

  36. Wattenberg, L. W., Lam, L. K. T., and Fladmoe, A. V., 1979, Inhibition of chemical carcinogen-induced neoplasia by coumarins and alpha-angelicalactone, Cancer Res. 39: 1651–1654.

    PubMed  CAS  Google Scholar 

  37. Remmer, H., Schenkman, J., Estabrook, R. W., Sasame, H., Gillette, J., Narasimhulu, S., Cooper, D. Y., and Rosenthal, O., 1966, Drug interaction with hepatic microsomal cytochrome, Mol. Pharmacol. 2: 187–190.

    PubMed  CAS  Google Scholar 

  38. Jefcoate, C. R., Gaylor, J. L., and Callabrese, R. L., 1969, Ligand interactions with cytochrome P-450. 1. Binding of primary amines, Biochemistry 8: 3455–3463.

    Article  PubMed  CAS  Google Scholar 

  39. Schenkman, J. B., Remmer, H., and Estabrook, R. W., 1967, Spectral studies of drug interaction with hepatic microsomal cytochrome P-450, Mol. Pharmacol. 3: 113–123.

    CAS  Google Scholar 

  40. Dominguez, O. V., and Samuels, L. T., 1963, Mechanism of inhibition of adrenal steroid 11-beta-hydroxylase by methopyrapone (metopirone), Endocrinology 73: 304–309.

    Article  PubMed  CAS  Google Scholar 

  41. Temple, T. E., and Liddle, G. W., 1970, Inhibitors of adrenal steroid biosynthesis, Annu. Rev. Pharmacol. 10: 199–218.

    Article  PubMed  CAS  Google Scholar 

  42. Rogerson, T. D., Wilkinson, C. F., and Hetarski, K., 1977, Steric factors in the inhibitory interaction of imidazoles with microsomal enzymes, Biochem. Pharmacol. 26: 1039–1042.

    Article  PubMed  CAS  Google Scholar 

  43. Wilkinson, C. F., Hetarski, K., Cantwell, G. R, and DiCarlo, F. J., 1974, Structure—activity relationships in the effects of 1-alkylimidazoles on microsomal oxidation in vitro and in vivo, Biochem. Pharmacol. 23: 2377–2386.

    Article  PubMed  CAS  Google Scholar 

  44. Duquette, P. H., Erickson, R. R., and Holtzman, J. L., 1983, Role of substrate lipophilicity on the N-demethylation and type I binding of 3-O-alkylmorphine analogues, J. Med. Chem. 26: 1343–1348.

    Article  PubMed  CAS  Google Scholar 

  45. Ator, M. A., and Ortiz de Montellano, R. R., 1990, Mechanism-based (suicide) enzyme inactivation, in: The Enzymes: Mechanisms of Catalysis, Vol. 19, 3rd ed. (D. S. Sig-man and R. D. Boyer, eds.), Academic Press, New York, pp. 214–282.

    Google Scholar 

  46. Silverman, R. B., 1988, Mechanism-Based Enzyme Inactivation: Chemistry and Enzymology, CRC Press, Boca Raton, FL.

    Google Scholar 

  47. Dalvi, R. R., 1987, Cytochrome P-450-dependent covalent binding of carbon disulfide to rat liver microsomal protein in vitro and its prevention by reduced glutathione, Arch. Toxicol. 61: 155–157.

    Article  PubMed  CAS  Google Scholar 

  48. De Matteis, F. A., and Seawright, A. A., 1973, Oxidative metabolism of carbon disulphide by the rat: Effect of treatments which modify the liver toxicity of carbon disulphide, Chem. Biol. Interact. 7: 375–388.

    Article  PubMed  Google Scholar 

  49. Bond, E. J., and De Matteis, F. A., 1969, Biochemical changes in rat liver after administration of carbon disulphide, with particular reference to microsomal changes, Biochem. Pharmacol. 18: 2531–2549.

    Article  PubMed  CAS  Google Scholar 

  50. Halpert, J., Hammond, D., and Neal, R. A., 1980, Inactivation of purified rat liver cytochrome P-450 during the metabolism of parathion (diethyl p-nitrophenyl phosphorothionate), J. Biol. Chem. 255: 1080–1089.

    PubMed  CAS  Google Scholar 

  51. Neal, R. A., Kamataki, T., Lin, M., Ptashne, K. A., Dalvi, R., and Poore, R. Y., 1977, Studies of the formation of reactive intermediates of parathion, in: Biological Reactive Intermediates ( D. J. Jollow, J. J. Koesis, R. Snyder, and H. Vaino, eds.), Plenum Press, New York, pp. 320–332.

    Chapter  Google Scholar 

  52. Miller, G. E., Zemaitis, M. A., and Greene, F. E., 1983, Mechanisms of diethyldithiocarbamate-induced loss of cytochrome P-450 from rat liver, Biochem. Pharmacol. 32: 2433–2442.

    Article  PubMed  CAS  Google Scholar 

  53. Elhawari, A. M., and Plaa, G. L., 1979, Impairment of hepatic mixed-function oxidase activity by alpha-and beta-naphthylisothiocyanate: Relationship to hepatotoxicity, Toxicol. Appl. Pharmacol. 48: 445–458.

    Article  CAS  Google Scholar 

  54. Lee, R W., Arnau, T., and Neal, R. A., 1980, Metabolism of alpha-naphthylthiourea by rat liver and rat lung microsomes, Toxicol. Appl. Pharmacol. 53: 164–173.

    Article  PubMed  CAS  Google Scholar 

  55. Lopez-Garcia, M. P., Dansette, R M., and Mansuy, D., 1993, Thiophene derivatives as new mechanism-based inhibitors of cytochromes P450: Inactivation of yeast-expressed human liver P450 2C9 by tienilic acid, Biochemistry 33: 166–175.

    Article  Google Scholar 

  56. Lopez-Garcia, M. P., Dansette, P. M., Valadon, P., Amar, C., Beaune, P. H., Guengerich, F. P., and Mansuy, D., 1993, Human liver P450s expressed in yeast as tools for reactive metabolite formation studies: Oxidative activation of tienilic acid by P450 2C9 and P450 2C10, Eur. J. Biochem. 213: 223–232.

    Article  PubMed  CAS  Google Scholar 

  57. Menard, R. H., Guenthner, T. M., Taburet, A. M., Kon, H., Pohl, L. R., Gillette, J. R., Gelboin, H. V., and Trager, W. F., 1979, Specificity of the in vitro destruction of adrenal and hepatic microsomal steroid hydroxylases by thiosterols, Mol. Pharmacol. 16: 997–1010.

    PubMed  CAS  Google Scholar 

  58. Kossor, D. C., Kominami, S., Takemori, S., and Colby, H. D., 1991, Role of the steroid 17a-hydroxylase in spironolactone-mediated destruction of adrenal cytochrome P-450, Mol. Pharmacol. 40: 321–325.

    PubMed  CAS  Google Scholar 

  59. Halpert, J., and Neal, R. A., 1980, Inactivation of purified rat liver cytochrome P-450 by chloramphenicol, Mol. Pharmacol. 17: 427–434.

    PubMed  CAS  Google Scholar 

  60. Halpert, J., 1982, Further studies of the suicide inactivation of purified rat liver cytochrome P-450 by chloramphenicol, Mol. Pharmacol. 21: 166–172.

    PubMed  CAS  Google Scholar 

  61. Halpert, J., 1981, Covalent modification of lysine during the suicide inactivation of rat liver cytochrome P-450 by chloramphenicol, Biochem. Pharmacol. 30: 875–881.

    Article  PubMed  CAS  Google Scholar 

  62. Halpert, J., Naslund, B., and Betner, I., 1983, Suicide inactivation of rat liver cytochrome P-450 by chloramphenicol in vivo and in vitro, Mol. Pharmacol. 23: 445–452.

    PubMed  CAS  Google Scholar 

  63. Halpert, J., Balfour, C., Miller, N. E., and Kaminsky, L. S., 1986, Dichloromethyl compounds as mechanism-based inactivators of rat liver cytochromes P450 in vitro, Mol. Pharmacol. 30: 19–24.

    PubMed  CAS  Google Scholar 

  64. Halpert, J., Jaw, J.-Y., Balfour, C., and Kaminsky, L. S., 1990, Selective inactivation by chlorofluoroacetamides of the major phenobarbital-inducible form(s) of rat liver cytochrome P-450, Drug Metab. Dispos. 18: 168–174.

    PubMed  CAS  Google Scholar 

  65. CaJacob, C. A., Chan, W., Shephard, E., and Ortiz de Montellano, P. R., 1988, The catalytic site of rat hepatic lauric acid co-hydroxylase. Protein vs prosthetic heure alkylation in the uu-hydroxylation of acetylenic fatty acids, J. Biol. Chem. 263: 18640–18649.

    PubMed  CAS  Google Scholar 

  66. Hammons, G. J., Alworth, W. L., Hopkins, N. E., Guengerich, F. P., and Kadlubar, F. E, 1989, 2-Ethynylnaphthalene as a mechanism-based inactivator of the cytochrome P-450-catalyzed N-oxidation of 2-naphthylamine, Chem. Res. Toxicol. 2: 367–374.

    Google Scholar 

  67. Yun, C.-H., Martin, M. V., Hopkins, N. E., Alworth, W. L., Hammons, G. J., and Guengerich, E P., 1992, Modification of cytochrome P4501A2 enzymes by the mechanism-based inactivator 2-ethynylnaphthalene, Biochemistry 31: 10556–10563.

    Article  PubMed  CAS  Google Scholar 

  68. Gan, L.-S. L., Acebo, A. L., and Alworth, W. L., 1984, 1-Ethynylpyrene, a suicide inhibitor of cytochrome P-450 dependent benzo(a)pyrene hydroxylase activity in liver microsomes, Biochemistry 23: 3827–3836.

    Google Scholar 

  69. Roberts, E. S., Hopkins, N. E., Alworth, W. L., and Hollenberg, P. F., 1993, Mechanism-based inactivation of cytochrome P450 2B1 by 2-ethynylnaphthalene: Identification of an active-site peptide, Chem. Res. Toxicol. 6: 470–479.

    Article  PubMed  CAS  Google Scholar 

  70. Chan, W. K., Sui, Z., and Ortiz de Montellano, P. R., 1993, Determinants of protein modification versus heure alkylation: Inactivation of cytochrome P450 1Al by 1-ethynylpyrene and phenylacetylene, Chem. Res. Toxicol. 6: 38–45.

    Article  PubMed  CAS  Google Scholar 

  71. Halpert, J., Jaw, J.-Y., and Balfour, C., 1989, Specific inactivation by 173-substituted steroids of rabbit and rat liver cytochromes P-450 responsible for progesterone 21-hydroxylation, Mol. Pharmacol. 34: 148–156.

    Google Scholar 

  72. Stevens, J. C., Jaw, J.-Y., Peng, C.-T., and Halpert, J., 1991, Mechanism-based inactivation of bovine adrenal cytochromes P450 C-21 and P450 17a by 17(3-substituted steroids, Biochemistry 30: 3649–3658.

    Article  PubMed  CAS  Google Scholar 

  73. Roberts, E. S., Hopkins, N. E., Zalulec, E. J., Gage, D. A., Alworth, W. L., and Hollenberg, P. F., 1994, Identification of active site peptides from 3H-labeled 2-ethynylnaphthalene-inactivated P450 2B I and 2B4 using amino acid sequencing and mass spectrometry, Biochemistry 33: 3766–3771.

    Article  PubMed  CAS  Google Scholar 

  74. Lunetta, J. M., Sugiyama, K., and Correia, M. A., 1989, Secobarbital-mediated inactivation of rat liver cytochrome P-450b: A mechanistic reappraisal, Mol. Pharmacol. 35: 10–17.

    PubMed  CAS  Google Scholar 

  75. Fouin-Fortunet, H., Tinel, M., Descatoire, V., Letteron, P., Laney, D., Geneve, J., and Pessayre, D., 1986, Inactivation of cytochrome P450 by the drug methoxsalen, J. Pharmacol. Exp. Ther. 236: 237–247.

    PubMed  CAS  Google Scholar 

  76. Labbe, G., Descatoire, V., Beaune, P., Letteron, P., Larrey, D., and Pessayre, D., 1989, Suicide inactivation of cytochrome P450 by methoxsalen. Evidence for the covalent binding of a reactive intermediate to the protein moiety, J. Pharmacol. Exp. Ther. 250: 1034–1042.

    PubMed  CAS  Google Scholar 

  77. Mays, D. C., Hilliard, J. B., Wong, D. D., Chambers, M. A., Park, S. S., Gelboin, H. V., and Gerber, N., 1990, Bioactivation of 8-methoxypsoralen and irreversible inactivation of cytochrome P450 in mouse liver microsomes: Modification by monoclonal antibodies, inhibition of drug metabolism and distribution of covalent adducts, J. Pharmacol. Exp. Ther. 254: 720–731.

    PubMed  CAS  Google Scholar 

  78. Bornheim, L. M., Everhart, E. T., Li, J., and Correia, M. A., 1993, Characterization of cannabidiolmediated cytochrome P450 inactivation, Biochem. Pharmacol. 45: 1323–1331.

    Article  PubMed  CAS  Google Scholar 

  79. Liu, H., Santostefano, M., and Safe, S., 1994, 2-Phenylphenanthridinone and related compounds: Aryl hydrocarbon receptor agonists and suicide inactivators of P4501A1, Arch. Biochem. Biophys. 313: 206–214.

    Google Scholar 

  80. Saunders, F. J., and Alberti, R. L., 1978, Aldactone: Spironolactone: A Comprehensive Review, Searle, New York.

    Google Scholar 

  81. Menard, R. H., Guenthner, T. M., Taburet, A. M., Kon, H., Pohl, L. R., Gillette, J. R., Gelboin, H. V., and Trager, W. F., 1979, Specificity of the in vitro destruction of adrenal and hepatic microsomal steroid hydroxylases by thiosteroids, Mol. Pharmacol. 16: 997–1010.

    PubMed  CAS  Google Scholar 

  82. Decker, C., Sugiyama, K., Underwood, M., and Correia, M. A., 1986, Inactivation of rat hepatic cytochrome P-450 by spironolactone, Biochem. Biophys. Res. Commun. 136: 1162–1169.

    Article  PubMed  CAS  Google Scholar 

  83. Decker, C. J., Rashed, M. S., Baillie, T. A., Maltby, D., and Correia, M. A., 1989, Oxidative metabolism of spironolactone: Evidence for the involvement of electrophilic thiosteroid species in drug-mediated destruction of rat hepatic cytochrome P450, Biochemistry 28: 5128–5136.

    Article  PubMed  CAS  Google Scholar 

  84. Menard, R. H., Guenthner, T. M., Kon, H., and Gillette, J. R., 1979, Studies on the destruction of adrenal and testicular cytochrome P-450 by spironolactone: Requirement for the 7-alpha-thio group and evidence for the loss of the heme and apoproteins of cytochrome P-450, J. Biol. Chem. 254: 1726–1733.

    PubMed  CAS  Google Scholar 

  85. Sherry, J. H., O’Donnell, J. P., Flowers, L., Lacagnin, L. B., and Colby, H. D., 1986, Metabolism of spironolactone by adrenocortical and hepatic microsomes: Relationship to cytochrome P-450 destruction, J. Pharmacol. Exp. Ther. 236: 675–680.

    PubMed  CAS  Google Scholar 

  86. Colby, H. D., O’Donnell, J. P., Lynn, N., Kossor, D. C., Johnson, P. B., and Levitt, M., 1991, Relationship between covalent binding to microsomal protein and the destruction of adrenal cytochrome P-450 by spironolactone, Toxicology 67: 143–154.

    Article  PubMed  CAS  Google Scholar 

  87. Decker, C. J., Cashman, J. R., Sugiyama, K., Maltby, D., and Correia, M. A., 1991, Formation of glutathionyl-spironolactone disulfide by rat liver cytochromes P450 or hog liver flavin-containing monooxygenases: A functional probe of two-electron oxidations of the thiosteroid? Chem. Res. Toxicol. 4: 669–677.

    Article  PubMed  CAS  Google Scholar 

  88. Ortiz de Montellano, P. R., and Komives, E. A., 1985, Branchpoint for heure alkylation and metabolite formation in the oxidation of aryl acetylenes, J. Biol. Chem. 260: 3330–3336.

    Google Scholar 

  89. Poulos, T. L., Finzel, B. C., and Howard, A. J., 1987, High-resolution crystal structure of cytochrome P450ca,n, J. Mol. Biol. 195: 687–700.

    Article  PubMed  CAS  Google Scholar 

  90. Nelson, D. R., and Strobel, H. W., 1988, On the membrane topology of vertebrate cytochrome P-450 proteins, J. Biol. Chem. 263: 6038–6050.

    PubMed  CAS  Google Scholar 

  91. He, K., Chen, B., Falick, A. M., and Correia, M. A., 1994, Identification of an active site peptide modified during mechanism-based inactivation of cytochrome P450 2B1 by secobarbital, Abstracts, 10th International Symposium on Microsomes & Drug Oxidations, p. 558.

    Google Scholar 

  92. Casida, J. E., 1970, Mixed function oxidase involvement in the biochemistry of insecticide synergists, J. Agric. Food Chem. 18: 753–772.

    Article  PubMed  CAS  Google Scholar 

  93. Hodgson, E., and Philpot, R. M., 1974, Interaction of methylene dioxyphenol (1,3-benzodioxole) compounds with enzymes and their effects on mammals, Drug Metab. Rev. 3: 231–301.

    Article  PubMed  CAS  Google Scholar 

  94. Wilkinson, C. F., Murray, M., and Marcus, C. B., 1984, Interactions of methylenedioxyphenyl compounds with cytochrome P-450 and effects on microsomal oxidation, in: Reviews in Biochemical Toxicology, Vol. 6 (E. Hodgson, J. R. Bend, and R. M. Philpot, eds.), Elsevier, Amsterdam, pp. 27–63.

    Google Scholar 

  95. Kulkarni, A. P., and Hodgson, E., 1978, Cumene hydroperoxide-generated spectral interactions of piperonyl butoxide and other synergists with microsomes from mammals and insects, Pestic. Biochem. Physiol. 9: 75–83.

    Article  CAS  Google Scholar 

  96. Franklin, M. R., 1971, The enzymic formation of a methylene dioxyphenyl derivative exhibiting an isocyanide-like spectrum with reduced cytochrome P-450 in hepatic microsomes, Xenobiotica 1: 581–591.

    Article  PubMed  CAS  Google Scholar 

  97. Elcombe, C. R., Bridges, J. W., Nimmo-Smith, R. H., and Werringloer, J., 1975, Cumene hydroperoxide-mediated formation of inhibited complexes of methylenedioxyphenyl compounds with cytochrome P-450, Biochem. Soc. Trans. 3: 967–970.

    CAS  Google Scholar 

  98. Elcombe, C. R., Bridges, J. W., Gray, T. J. B., Nimmo-Smith, R. H., and Netter, K. J., 1975, Studies on the interaction of safrole with rat hepatic microsomes, Biochem. Pharmacol. 24: 1427–1433.

    Article  CAS  Google Scholar 

  99. Dickins, M., Elcombe, C. R., Moloney, S. J., Netter, K. J., and Bridges, J. W., 1979, Further studies on the dissociation of the isosafrole metabolite—cytochrome P-450 complex, Biochem. Pharmacol. 28: 231–238.

    Article  PubMed  CAS  Google Scholar 

  100. Ullrich, V., and Schnabel, K. H., 1973, Formation and binding of carbanions by cytochrome P-450 of liver microsomes, Drug Metab. Dispos. 1: 176–183.

    PubMed  CAS  Google Scholar 

  101. Ullrich, V., 1977, Mechanism of microsomal monooxygenases and drug toxicity, in: Biological Reactive Intermediates ( D. J. Jollow, J. Kocsis, R. Snyder, and H. Vaino, eds.), Plenum Press, New York, pp. 65–82.

    Chapter  Google Scholar 

  102. Murray, M., Hetnarski, K., and Wilkinson, C. F., 1985, Selective inhibitory interactions of alkoxymethylenedioxybenzenes towards mono-oxygenase activity in rat-hepatic microsomes, Xenobiotica 15: 369–379.

    Article  PubMed  CAS  Google Scholar 

  103. Murray, M., Wilkinson, C. F., Marcus, C., and Dube, C. E., 1983, Structure—activity relationships in the interactions of alkoxymethylenedioxybenzene derivatives with rat hepatic microsomal mixed-function oxidases in vivo, Mol. Pharmacol. 24: 129–136.

    PubMed  CAS  Google Scholar 

  104. Mansuy, D., 1981, Use of model systems in biochemical toxicology: Heme models, in: Reviews in Biochemical Toxicology, Vol. 3 ( E. Hodgson, J. R. Bend, and R. M. Philpot, eds.), Elsevier, Amsterdam, pp. 283–320.

    Google Scholar 

  105. Mansuy, D., Battioni, J. P., Chottard, J. C., and Ullrich, V., 1979, Preparation of a porphyrin-iron-carbene model for the cytochrome P-450 complexes obtained upon metabolic oxidation of the insecticide synergists of the 1,3-benzodioxole series, J. Am. Chem. Soc. 101: 3971–3973.

    Article  CAS  Google Scholar 

  106. Dahl, A. R., and Hodgson, E., 1979, The interaction of aliphatic analogs of methylenedioxyphenyl compounds with cytochromes P-450 and P-420, Chem. Biol. Interact. 27: 163–175.

    Article  PubMed  CAS  Google Scholar 

  107. Anders, M. W., Sunram, J. M., and Wilkinson, C. F., 1984, Mechanism of the metabolism of 1,3-benzodioxoles to carbon monoxide, Biochem. Pharmacol. 33: 577–580.

    Article  PubMed  CAS  Google Scholar 

  108. Hansch, C., 1968, The use of homolytic, steric, and hydrophobic constants in a structure—activity study of 1,3-benzodioxole synergists, J. Med. Chem. 11: 920–924.

    Article  PubMed  CAS  Google Scholar 

  109. Hennessy, D. J., 1965, Hydride-transferring ability of methylene dioxybenzenes as a basis of synergistic activity, J. Agric. Food Chem. 13: 218–231.

    Article  CAS  Google Scholar 

  110. Cook, J. C., and Hodgson, E., 1983, Induction of cytochrome P-450 by methylenedioxyphenyl compounds: Importance of the methylene carbon, Toxicol. Appl. Pharmacol. 68: 131–139.

    Article  PubMed  CAS  Google Scholar 

  111. Casida, J. E., Engel, J. L., Essac, E. G., Kamienski, F. X., and Kuwatsuka, S., 1966, Methylene-14Cdioxyphenyl compounds: Metabolism in relation to their synergistic action, Science 153: 1130–1133.

    Article  PubMed  CAS  Google Scholar 

  112. Kamienski, F. X., and Casida, J. E., 1970, Importance of methylenation in the metabolism in vivo and in vitro of methylenedioxyphenyl synergists and related compounds in mammals, Biochem. Pharmacol. 19: 91–112.

    Article  PubMed  CAS  Google Scholar 

  113. Yu, L.-S., Wilkinson, C. F., and Anders, M. W., 1980, Generation of carbon monoxide during the microsomal metabolism of methylenedioxyphenyl compounds, Biochem. Pharmacol. 29: 1113–1122.

    Article  PubMed  CAS  Google Scholar 

  114. Metcalf, R. L., Fukuto, C. W., Fahmy, S., El-Azis, S., and Metcalf, E. R., 1966, Mode of action of carbamate synergists, J. Agric. Food. Chem. 14: 555–562.

    Article  CAS  Google Scholar 

  115. Franklin, M. R., 1977, Inhibition of mixed-function oxidations by substrates forming reduced cytochrome P-450 metabolic-intermediate complexes, Pharmacol. Ther. A 2: 227–245.

    CAS  Google Scholar 

  116. Larrey, D., Tinel, M., and Pessayre, D., 1983, Formation of inactive cytochrome P450 Fe(II)—metabolite complexes with several erythromycin derivatives but not with josamycin and midecamycin in rats, Biochem. Pharmacol. 32: 1487–1493.

    Article  PubMed  CAS  Google Scholar 

  117. Delaforge, M., Jaquen, M., and Mansuy, D., 1983, Dual effects of macrolide antibiotics on rat liver cytochrome P-450. Induction and formation of metabolite-complexes: A structure—activity relationship, Biochem. Pharmacol. 32: 2309–2318.

    Article  PubMed  CAS  Google Scholar 

  118. Mansuy, D., Beaune, P., Cresteil, T., Bacot, C., Chottard, J. C., and Gans, P., 1978, Formation of complexes between microsomal cytochrome P-450-Fe(II) and nitrosoarenes obtained by oxidation of arylhydroxylamines or reduction of nitroarenes in situ, Eur. J Biochem. 86: 573–579.

    Article  PubMed  CAS  Google Scholar 

  119. Jonsson, J., and Lindeke, B., 1976, On the formation of cytochrome P-450 product complexes during the metabolism of phenylalkylamines, Acta Pharm. Suec. 13: 313–320.

    PubMed  CAS  Google Scholar 

  120. Franklin, M. R., 1974, The formation of a 455 nm complex during cytochrome P-450-dependent N-hydroxylamphetamine metabolism, Mol. Pharmacol. 10: 975–985.

    CAS  Google Scholar 

  121. Mansuy, D., 1978, Coordination chemistry of cytochromes P-450 and iron-porphyrins: Relevance to pharmacology and toxicology, Biochimie 60: 969–977.

    Article  CAS  Google Scholar 

  122. Lindeke, B., Anderson, E., Lundkvist, G., Jonsson, H., and Eriksson, S.-O., 1975, Autoxidation of N-hydroxyamphetamine and N-hydroxyphentermine: The formation of 2-nitroso-l-phenylpropanes and 1-phenyl-2-propanone oxime, Acta Pharm. Suec. 12: 183–198.

    PubMed  CAS  Google Scholar 

  123. Mansuy, D., Gans, P., Chottard, J.-C., and Bartoli, J.-F., 1977, Nitrosoalkanes as Fe(II) ligands in the 455-nm-absorbing cytochrome P-450 complexes formed from nitroalkanes in reducing conditions, Eur. J. Biochem. 76: 607–615.

    Article  PubMed  CAS  Google Scholar 

  124. Pessayre, D., Konstantinova-Mitcheva, M., Descatoire, V., Cobert, B., Wandscheer, J.-C., Level, R., Feldmann, G., Mansuy, D., and Benhamou, J.-P., 1981, Hypoactivity of cytochrome P-450 after triacetyloleandomycin administration, Biochem. Pharmacol. 30: 559–564.

    Article  PubMed  CAS  Google Scholar 

  125. Wrighton, S. A., Maurel, P., Schuetz, E. G., Watkins, P. B., Young, B., and Guzelian, P. S., 1985, Identification of the cytochrome P-450 induced by macrolide antibiotics in rat liver as the glucocorticoid responsive cytochrome P-450p, Biochemistry 24: 2171–2178.

    Article  PubMed  CAS  Google Scholar 

  126. Watkins, P. B., Wrighton, S. A., Schuetz, E. G., Maurel, P., and Guzelian, P. S., 1986, Macrolide antibiotics inhibit the degradation of the glucocorticoid-responsive cytochrome P-450p in rat hepatocytes in vivo and in primary monolayer culture, J. Biol. Chem. 261: 6264–6271.

    PubMed  CAS  Google Scholar 

  127. Hines, R. N., and Prough, R. A., 1980, The characterization of an inhibitory complex formed with cytochrome P-450 and a metabolite of 1,1-disubstituted hydrazines, J. Pharmacol. Ther. 214: 80–86.

    CAS  Google Scholar 

  128. Muakkasah, S. F., Bidlack, W. R., and Yang, W. C. T., 1981, Mechanism of the inhibitory action of isoniazid on microsomal drug metabolism, Biochem. Pharmacol. 30: 1651–1658.

    Article  Google Scholar 

  129. Moloney, S. J., Snider, B. J., and Prough, R. A., 1984, The interactions of hydrazine derivatives with rat-hepatic cytochrome P-450, Xenobiorica 14: 803–814.

    Article  CAS  Google Scholar 

  130. Muakkassah, S. F., Bidlack, W. R., and Yang, W. C. T., 1982, Reversal of the effects of isoniazid on hepatic cytochrome P-450 by potassium ferricyanide, Biochem. Pharmacol. 31: 249–251.

    Article  PubMed  CAS  Google Scholar 

  131. Mahy, J.-P., Battioni, P., Mansuy, D., Fisher, J., Weiss, R., Mispelter, J., Morgenstern-Badarau, I., and Gans, P., 1984, Iron porphyrin—nitrene complexes: Preparation from 1,1-dialkylhydrazines: Electronic structure from NMR, Mössbauer, and magnetic susceptibility studies and crystal structure of the [tetrakis(p-chlorophenyl) porphyrinato-(2,2,6,6-tetramethyl-1-piperidyl) nitrene]iron complex, J. Am. Chem. Soc. 106: 1699–1706.

    Article  CAS  Google Scholar 

  132. Mansuy, D., Battioni, P., and Mahy, J.-P., 1982, Isolation of an iron—nitrene complex from the di oxygen and iron porphyrin dependent oxidation of a hydrazine, J. Am. Chem. Soc. 104: 4487–4489.

    Article  CAS  Google Scholar 

  133. Ortiz de Montellano, P. R., 1985, Alkenes and alkynes, in: Bioactivntion of Foreign Compounds ( M. Anders, ed.), Academic Press, New York, pp. 121–155.

    Google Scholar 

  134. De Matteis, F., 1978, Loss of liver cytochrome P-450 caused by chemicals, in: Heine and Hemoproteins, Handbook of Experimental Pharmacology, Vol. 44 (F. De Matteis and W. N. Aldridge, eds.), Springer-Verlag, Berlin, pp. 95–127.

    Google Scholar 

  135. Ortiz de Montellano, P. R., and Correia, M. A., 1983, Suicidal destruction of cytochrome P-450 during oxidative drug metabolism, Annu. Rev. Pharmacol. Toxicol. 23: 481–503.

    Article  Google Scholar 

  136. Ortiz de Montellano, P. R., and Mico, B. A., 1980, Destruction of cytochrome P-450 by ethylene and other olefins, Mol. Pharmacol. 18: 128–135.

    Google Scholar 

  137. Collman, J. P., Hampton, P. D., and Brauman, J. I., 1986, Stereochemical and mechanistic studies of the “suicide” event in biomimetic P-450 olefin epoxidation, J. Am. Chem. Soc. 108: 7861–7862.

    Article  PubMed  CAS  Google Scholar 

  138. Brady, J. F., Ishizaki, H., Fukuto, J. M., Lin, M. C., Fadel, A., Gapac, J. M., and Yang, C. S., 1991, Inhibition of cytochrome P-450 2E1 by diallyl sulfide and its metabolites, Chem. Res. Toxicol. 4: 642–647.

    Article  PubMed  CAS  Google Scholar 

  139. Ortiz de Montellano, P. R., Stearns, R. A., and Langry, K. C., 1984, The allylisopropylacetamide and novonal prosthetic heure adducts, Mol. Pharmacol. 25: 310–317.

    Google Scholar 

  140. Ortiz de Montellano, P. R., Mangold, B. L. K., Wheeler, C., Kunze, K. L., and Reich, N. O., 1983, Stereochemistry of cytochrome P-450-catalyzed epoxidation and prosthetic heure alkylation, J. Biol. Chem. 258: 4208–4213.

    Google Scholar 

  141. Ortiz de Montellano, P. R., Kunze, K. L., Beilan, H. S., and Wheeler, C., 1982, Destruction of cytochrome P-450 by vinyl fluoride, fluroxene, and acetylene: Evidence for a radical cation intermediate in olefin oxidation, Biochemistry 21: 1331–1339.

    Article  Google Scholar 

  142. Kunze, K. L., Mangold, B. L. K., Wheeler, C., Beilan, H. S., and Ortiz de Montellano, P. R., 1983, The cytochrome P-450 active site, J. Biol. Chem. 258: 4202–4207.

    PubMed  CAS  Google Scholar 

  143. Collman, J. P., Hampton, P. D., and Brauman, J. I., 1986, Stereochemical and mechanistic studies of the “suicide” event in biomimetic P-450 olefin epoxidation, J. Am. Chem. Soc. 108: 7861–7862.

    Article  PubMed  CAS  Google Scholar 

  144. Collman, J. P., Hampton, P. D., and Brauman, J. I., 1990, Suicide inactivation of cytochrome P-450 model compounds by terminal olefins. Part I: A mechanistic study of heure N-alkylation and epoxidation, J. Am. Chem. Soc. 112: 2977–2986.

    Article  CAS  Google Scholar 

  145. Collman, J. P., Hampton, P. D., and Brauman, J. I., 1990, Suicide inactivation of cytochrome P-450 compounds by terminal olefins. Part II: Steric and electronic effects in heure N-alkylation and epoxidation, J. Am. Chem. Soc. 112: 2986–2998.

    Article  CAS  Google Scholar 

  146. Mansuy, D., Devocelle, L., Artaud, I., and Battioni, J.-P., 1985, Alkene oxidations by iodosylbenzene catalyzed by iron-porphyrins: Fate of the catalyst and formation of N-alkyl-porphyrin green pigments from monosubstituted alkenes as in cytochrome P-450, Nouv. J. Clrim. 9: 711–716.

    CAS  Google Scholar 

  147. Artaud, I., Devocelle, L., Battioni, J.-P., Girault, J.-P., and Mansuy, D., 1987, Suicidal inactivation of iron porphyrin catalysts during alk-1-ene oxidation: Isolation of a new type of N-alkylporphyrin, J. Am. Chem. Soc. 109: 3782–3783.

    Article  CAS  Google Scholar 

  148. Traylor, T. G., Nakano, T., Mikztal, A. R., and Dunlap, B. E., 1987, Transient formation of N-alkylhemins during hemin-catalyzed epoxidation of norbornene. Evidence concerning the mechanisms of epoxidation, J. Am. Chem. Soc. 109: 3625–3632.

    Article  CAS  Google Scholar 

  149. Traylor, T. G., and Mikztal, A. R., 1989, Alkene epoxidations catalyzed by iron(III), manganese(III), and chromium(III) porphyrins. Effects of metal and porphyrin substituents on selectivity and regio-chemistry of epoxidation, J. Am. Chem. Soc. 111: 7443–7448.

    Article  CAS  Google Scholar 

  150. Nakano, T., Traylor, T. G., and Dolphin, D., 1990, The formation of N-alkylporphyrins during epoxidation of ethylene catalyzed by iron(III) meso-tetrakis(2,6-dichlorophenyl)porphyrin, Can. J. Chem. 10: 1859–1866.

    Google Scholar 

  151. Tian, Z.-Q., Richards, J. L., and Traylor, T. G., 1995, Formation of both primary and secondary N-alkylhemins during hemin-catalyzed epoxidation of terminal alkenes, J. Am. Chem. Soc. 117: 21–29.

    Article  CAS  Google Scholar 

  152. Dexter, A. E, and Hager, L. P., 1995, Transient heure N-alkylation of chloroperoxidase by terminal alkenes and alkynes, J. Am. Chem. Soc. 117: 817–818.

    Article  Google Scholar 

  153. Ortiz de Montellano, P. R., and Kunze, K. L., 1980, Self-catalyzed inactivation of hepatic cytochrome P-450 by ethynyl substrates, J. Biol. Chem. 255: 5578–5585.

    Google Scholar 

  154. Guengerich, F. P., 1990, Mechanism-based inactivation of human liver microsomal cytochrome P-450 IIIA4 by gestodene, Chem. Res. Toxicol. 3: 363–371.

    Article  PubMed  CAS  Google Scholar 

  155. De Matteis, F., Abbritti, G., and Gibbs, A. H., 1973, Decreased liver activity of porphyrin-metal chelatase in hepatic porphyria caused by 3,5-diethoxycarbonyl-1,4-dihydrocollidine: Studies in rats and mice, Biochem. J. 134: 717–727.

    PubMed  Google Scholar 

  156. De Matteis, F., and Gibbs, A., 1972, Stimulation of liver 5-aminolaevulinate synthetase by drugs and its relevance to drug-induced accumulation of cytochrome P-450, Biochem. J. 126: 1149–1160.

    PubMed  Google Scholar 

  157. Gayarthri, A. K., and Padmanaban, G., 1974, Biochemical effects of 3,5-diethoxycarbonyl-1,4-dihydrocollidine in mouse liver, Biochem. Pharmacol. 23: 2713–2725.

    Article  Google Scholar 

  158. Tephly, T. R., Gibbs, A. H., Ingall, G., and De Matteis, F., 1980, Studies on the mechanism of experimental porphyria and ferrochelatase inhibition produced by 3,5-diethoxycarbonyl-1,4-dihydrocollidine, Int. J. Biochem. 12: 993–998.

    Article  PubMed  CAS  Google Scholar 

  159. Cole, S. P. C. C., and Marks, G. S., 1984, Ferrochelatase and N-alkylated porphyrins, Mol. Cell. Biochem. 64: 127–137.

    Article  PubMed  CAS  Google Scholar 

  160. Augusto, O., Beilan, H. S., and Ortiz de Montellano, R. R., 1982, The catalytic mechanism of cytochrome P-450: Spin-trapping evidence for one-electron substrate oxidation, J. Biol. Chem. 257: 11288–11295.

    PubMed  CAS  Google Scholar 

  161. De Matteis, F., Hollands, C., Gibbs, A. H., de Sa, N., and Rizzardini, M., 1982, Inactivation of cytochrome P-450 and production of N-alkylated porphyrins caused in isolated hepatocytes by substituted dihydropyridines: Structural requirements for loss of haem and alkylation of the pyrrole nitrogen atom, FEBS Len. 145: 87–92.

    Article  Google Scholar 

  162. McCluskey, S. A., Marks, G. S., Sutherland, E. P., Jacobsen, N., and Ortiz de Montellano, R. R., 1986, Ferrochelatase-inhibitory activity and N-alkylprotoporphyrin formation with analogues of 3,5diethoxycarbonyl- 1,4-dihydro-2,4,6-trimethylpyridine (DDC) containing extended 4-alkyl groups: Implications for the active site of ferrochelatase, Mol. Pharmacol. 30: 352–357.

    PubMed  CAS  Google Scholar 

  163. McCluskey, S. A., Riddick, D. S., Mackie, J. E., Kimmett, R. A., Whitney, R. A., and Marks, G. S., 1992, Inactivation of cytochrome P450 and inhibition of ferrochelatase by analogues of 3,5-diethoxycarbonyl-1,4-dihydro-2,4,6-trimethylpyridine with 4-nonyl and 4-dodecyl substituents, Can. J. Physiol. Pharmacol. 70: 1069–1074.

    Article  PubMed  CAS  Google Scholar 

  164. Tephly, T. R., Coffman, B. L., Ingall, G., Abou Zeit-Har, M. S., Goff, H. M., Tabba, H. D., and Smith, K. M., 1981, Identification of N-methylprotoporphyrin IX in livers of untreated mice and mice treated with 3,5-diethoxycarbonyl-1,4-dihydrocollidine: Source of the methyl group, Arch. Biochem. Biophys. 212: 120–126.

    Article  PubMed  CAS  Google Scholar 

  165. De Matteis, F., Gibbs, A. H., Farmer, R. B., and Lamb, J. H., 1981, Liver production of N-alkylated porphyrins caused by treatment with substituted dihydropyridines, FEBS Lett. 129: 328–331.

    Article  PubMed  Google Scholar 

  166. De Matteis, F., Gibbs, A. H., and Hollands, C., 1983, N-Alkylation of the haem moiety of cytochrome P-450 caused by substituted dihydropyridines. Preferential attack of different pyrrole nitrogen atoms after induction of various cytochrome P-450 isoenzymes, Biochem. J. 211: 455–461.

    PubMed  Google Scholar 

  167. Tephly, T. R., Black, K. A., Green, M. D., Coffman, B. L., Dannan, G. A., and Guengerich, F. R. 1986, Effect of the suicide substrate 3,5-diethoxycarbonyl-2,6-dimethyl-4-ethyl-1,4-dihydropyridine on the metabolism of xenobiotics and on cytochrome P-450 apoproteins, Mol. Pharmacol. 29: 81–87.

    PubMed  CAS  Google Scholar 

  168. Tephly, T. R., Black, K. A., Green, M. D., Coffman, B. L., Dannan, G. A., and Guengerich, F. P., 1986, Effect of suicide substrate 3,5-diethoxycarbonyl-2,6-dimethyl-4-ethyl-1,4-dihydropyridine on the metabolism of xenobiotics and on cytochrome P-450 apoproteins, Mol. Pharmacol. 29: 81–87.

    PubMed  CAS  Google Scholar 

  169. Riddick, D. S., Park, S. S., Gelboin, H. V., and Marks, G. S., 1990, Effects of 4-alkyl analogues of 3,5-diethoxycarbonyl-1,4-dihydro-2,4,6-trimethylpyridine on hepatic cytochrome P-450 heure, apoproteins, and catalytic activities following in vivo administration to rats, Mol. Pharmacol. 37: 130–136.

    PubMed  CAS  Google Scholar 

  170. Lee, J. S., Jacobsen, N. E., and Ortiz de Montellano, P. R., 1988, 4-Alkyl radical extrusion in the cytochrome P-450-catalyzed oxidation of 4-alkyl-l,4-dihydropyridines, Biochemistry 27: 7703–7710.

    Google Scholar 

  171. Bäcker, R. H., and Guengerich, F. P., 1986, Oxidation of 4-aryl-and 4-alkyl-substituted 2,6-dimethyl3,5-bis(alkoxycarbonyl)-1,4-dihydropyridines by human liver microsomes and immunochemical evidence for the involvement of a form of cytochrome P-450, J. Med. Chem. 29: 1596–1603.

    Article  Google Scholar 

  172. McCluskey, S. A., Whitney, R. A., and Marks, G. S., 1989, Evidence for the stereoselective inhibition of chick embryo hepatic ferrochelatase by N-alkylated porphyrins, Mol. Pharmacol. 36: 608–614.

    PubMed  CAS  Google Scholar 

  173. Kennedy, C. H., and Mason, R. P., 1990, A reexamination of the cytochrome P-450-catalyzed free radical production from dihydropyridine: Evidence of trace transition metal catalysis, J. Biol. Chem. 265: 11425–11428.

    PubMed  CAS  Google Scholar 

  174. Ortiz de Montellano, R. R., and Kerr, D. E., 1985, Inactivation of myoglobin by ortho-substituted aryl hydrazines: Formation of prosthetic heure aryl-iron but not N-aryl adducts, Biochemistry 24: 1147–1152.

    Article  Google Scholar 

  175. Lukton, D., Mackie, J. E., Lee, J. S., Marks, G. S., and Ortiz de Montellano, R. R., 1988, 2,2-Dialkyl1,2-dihydroquinolines: Cytochrome P-450 catalyzed N-alkylporphyrin formation, ferrochelatase inhibition, and induction of 5-aminolevulinic acid synthase activity, Chem. Res. Toxicol. 1: 208–215.

    Google Scholar 

  176. Muakkassah, W. F., and Yang, W. C. T., 1981, Mechanism of the inhibitory action of phenelzine on microsomal drug metabolism, J. Pharmacol. Exp. Ther. 219: 147–155.

    PubMed  CAS  Google Scholar 

  177. Ortiz de Montellano, P. R., Augusto, O., Viola, F., and Kunze, K. L., 1983, Carbon radicals in the metabolism of alkyl hydrazines, J. Biol. Chem. 258: 8623–8629.

    Google Scholar 

  178. Ortiz de Montellano, P. R., and Watanabe, M. D., 1987, Free radical pathways in the in vitro hepatic metabolism of phenelzine, Mol. Pharmacol. 31: 213–219.

    Google Scholar 

  179. Rumyantseva, G. V., Kennedy, C. H., and Mason, R. P., 1991, Trace transition metal-catalyzed reactions in the microsomal metabolism of alkyl hydrazines to carbon-centered free radicals, J. Biol. Chem. 266: 21422–21427.

    PubMed  CAS  Google Scholar 

  180. Jonen, H. G., Werringloer, J., Prough, R. A., and Estabrook, R. W., 1982, The reaction of phenylhydrazine with microsomal cytochrome P-450: Catalysis of heure modification, J. Biol. Chem. 257: 4404–4411.

    PubMed  CAS  Google Scholar 

  181. Mansuy, D., Battioni, P., Bartoli, J.-F., and Mahy, J.-P., 1985, Suicidal inactivation of microsomal cytochrome P-450 by hydrazones, Biochem. Pharmacol. 34: 431–432.

    Article  CAS  Google Scholar 

  182. Delaforge, M., Battioni, R, Mahy, J.-P., and Mansuy, D., 1986, In vivo formation of a-methyl and a-phenyl-ferric complexes of hemoglobin and liver cytochrome P-450 upon treatment of rats with methyl and phenylhydrazine, Chem. Biol. Interact. 60: 101–114.

    CAS  Google Scholar 

  183. Raag, R., Swanson, B. S., Poulos, T. L., and Ortiz de Montellano, P. R., 1990, Formation, crystal structure, and rearrangement of a cytochrome P450Cnm iron-phenyl complex, Biochemistry 29: 8119–8126.

    Article  PubMed  CAS  Google Scholar 

  184. Ortiz de Montellano, P. R., and Kunze, K. L., 1981, Formation of N-phenylheme in the hemolytic reaction of phenylhydrazine with hemoglobin, J. Am. Chem. Soc. 103: 581–586.

    Google Scholar 

  185. Saito, S., and Itano, H. A., 1981, Beta-meso-phenylbiliverdin IX-alpha and N-phenylprotoporphyrin IX, products of the reaction of phenylhydrazine with oxyhemoproteins, Proc. Natl. Acad. Sci. USA 78: 5508–5512.

    Article  PubMed  CAS  Google Scholar 

  186. Augusto, O., Kunze, K. L., and Ortiz de Montellano, P. R., 1982, N-Phenylprotoporphyrin IX formation in the hemoglobin—phenyl hydrazine reaction: Evidence for a protein-stabilized iron-phenyl intermediate, J. Biol. Chem. 257: 6231–6241.

    PubMed  CAS  Google Scholar 

  187. Kunze, K. L., and Ortiz de Montellano, P. R., 1983, Formation of a sigma-bonded aryl-iron complex in the reaction of arylhydrazines with hemoglobin and myoglobin, J. Am. Chem. Soc. 105: 1380–1381.

    Article  CAS  Google Scholar 

  188. Ortiz de Montellano, P. R., and Kerr, D. E., 1983, Inactivation of catalane by phenylhydrazine: Formation of a stable aryl-iron heure complex, J. Biol. Chem. 258: 10558–10563.

    Google Scholar 

  189. Ringe, D., Petsko, G. A., Kerr, D. E., and Ortiz de Montellano, P. R., 1984, Reaction of myoglobin with phenylhydrazine: A molecular doorstop, Biochemistry 23: 2–4.

    Article  PubMed  CAS  Google Scholar 

  190. Swanson, B. A., and Ortiz de Montellano, P. R., 1991, Structure determination and absolute stereo-chemistry of the four N-phenylprotoporphyrin IX regioisomers, J. Am. Chem. Soc. 113: 8146–8153.

    Article  CAS  Google Scholar 

  191. Tuck, S. F., Graham-Lorence, S., Peterson, J. A., and Ortiz de Montellano, P. R., 1993, Active sites of the cytochrome P450cam (CYP101) F87W and F87A mutants. Evidence for significant structural reorganization without alteration of catalytic regiospecificity, J. Biol. Chem. 268: 269–275.

    PubMed  CAS  Google Scholar 

  192. Swanson, B. A., Dutton, D. R., Yang, C. S., and Ortiz de Montellano, P. R., 1991, The active sites of cytochromes P450 IA1, IIBI, 11B2, and IIE1. Topological analysis by in situ rearrangement of phenyl-iron complexes, J. Biol. Chem. 266: 19258–19264.

    PubMed  CAS  Google Scholar 

  193. Swanson, B. A., Halpert, J. R., Bornheim, L. M., and Ortiz de Montellano, P. R., 1992, Topological analysis of the active sites of cytochromes P4501IB4 (rabbit), P45011B10 (mouse) and P4501IB11 (dog) by in situ rearrangement of phenyl-iron complexes, Arch. Biochem. Biophys. 292: 42–46.

    Article  PubMed  CAS  Google Scholar 

  194. Tuck, S. F., Peterson, J. A., and Ortiz de Montellano, P. R., 1992, Active site topologies of bacterial cytochromes P450 101 (P450ca,n), P450 108 (P450,Pq,), and P450 102 (P45013M-3): In situ rearrangement of their phenyl-iron complexes, J. Biol. them. 267: 5614–5620.

    CAS  Google Scholar 

  195. Tuck, S. F., Aoyama, Y., Yoshida, Y., and Ortiz de Montellano, P. R., 1992, Active site topology of Saccharomyces cerevisiae lanosterol 14a-demethylase (CYP51) and its A310D mutant (cytochrome P450sGt), J. Biol. Chem. 267: 13175–13179.

    PubMed  CAS  Google Scholar 

  196. Tuck, S. F., and Ortiz de Montellano, P. R., 1992, Topological mapping of the active sites of cytochromes P4502B 1 and P4502B2 by in situ rearrangement of their aryl-iron complexes, Biochemistry 31: 6911–6916.

    Article  PubMed  CAS  Google Scholar 

  197. Tuck, S.F., Hiroya, K., Shimizu, T., Hatano, M., and Ortiz de Montellano, P. R., 1993, The cytochrome P450 1A2 (CYP1A2) active site: Topology and perturbations caused by Glu-318 and Thr-319 mutations, Biochemistry 32: 2548–2553.

    Article  PubMed  CAS  Google Scholar 

  198. Battioni, P., Mahy, J.-P., Delaforge, M., and Mansuy, D., 1983, Reaction of monosubstituted hydrazines and diazenes with rat-liver cytochrome P-450: Formation of ferrous-diazene and ferric sigma-alkyl complexes, Eur. J. Biochem. 134: 241–248.

    Article  PubMed  CAS  Google Scholar 

  199. Battioni, P., Mahy, J.-P., Gillet, G., and Mansuy, D., 1983, Iron porphyrin dependent oxidation of methyl-and phenylhydrazine: Isolation of iron(II)-diazene and sigma-alkyliron (III) (or aryliron(III)) complexes. Relevance to the reactions of hemoproteins with hydrazines, J. Am. Chem. Soc. 105: 1399–1401.

    Article  CAS  Google Scholar 

  200. Campbell, C. D., and Rees, C. W., 1969, Reactive intermediates. Part III. Oxidation of 1-aminobenzotriazole with oxidants other than lead tetra-acetate, J. Chem. Soc. C 1969: 752–756.

    Article  Google Scholar 

  201. Ortiz de Montellano, P. R., and Mathews, J. M., 1981, Autocatalytic alkylation of the cytochrome P-450 prosthetic haem group by 1-aminobenzotriazole: Isolation of an N,N-bridged benzyne-protoporphyrin IX adduct, Biochem. J. 195: 761–764.

    Google Scholar 

  202. Ortiz de Montellano, R. R., Mathews. J. M., and Langry, K. C., 1984, Autocatalytic inactivation of cytochrome P-450 and chloroperoxidase by 1-aminobenzotriazole and other aryne precursors, Tetrahedron 40: 511–519.

    Google Scholar 

  203. Ortiz de Montellano, R. R., and Costa, A. K., 1985, Dissociation of cytochrome P450 inactivation and induction, Arch. Biochem. Biophys. 251: 514–524.

    Article  Google Scholar 

  204. Mico, B. A., Federowicz, D. A., Ripple, M. G., and Kerns, W., 1988, In vivo inhibition of oxidative drug metabolism by, and acute toxicity of, 1-aminobenzotriazole (ABT), Biochem. Pharmacol. 37: 2515–2519.

    PubMed  CAS  Google Scholar 

  205. Mugford, C. A., Mortillo, M., Mico, B. A., and Tarloff, J. B., 1992, 1-Aminobenzotriazole-induced destruction of hepatic and renal cytochromes P450 in male Sprague—Dawley rats, Fundam. Appl. Toxicol. 19: 43–49.

    Google Scholar 

  206. Mathews, J. M., and Bend, J. R., 1986, N-Alkylaminobenzotriazoles as isozyme-selective suicide inhibitors of rabbit pulmonary microsomal cytochrome P-450, Mol. Pharmacol. 30: 25–32.

    PubMed  CAS  Google Scholar 

  207. Mathews, J. M., and Bend, J. R., 1993, N-Aralkyl derivatives of 1-aminobenzotriazole as potent isozyme-selective mechanism-based inhibitors of rabbit pulmonary cytochrome P450 in vivo, J. Pharmacol. Exp. Ther. 265: 281–285.

    PubMed  CAS  Google Scholar 

  208. Woodcroft, K. J., Szczepan, E. W., Knickle, L. C., and Bend, J. R., 1990, Three N-aralkylated derivatives of 1-aminobenzotriazole as potent isozyme-selective mechanism-based inhibitors of guinea pig pulmonary cytochrome P450 in vitro, Drug Metab. Dispos. 18: 1031–1037.

    PubMed  CAS  Google Scholar 

  209. Moreland, D. E., Corbin, F. T., and McFarland, J. E., 1993, Effects of safeners on the oxidation of multiple substrates by grain sorghum microsomes, Pestic. Biochem. Physiol. 45: 43–53.

    Article  CAS  Google Scholar 

  210. Cabanne, F., Huby, D., Gaillardon, P., Scalia, R., and Durst, F., 1987, Effect of the cytochrome P-450 inactivator 1-aminobenzotriazole on the metabolism of chlortoluron and isoproturon in wheat, Pestic. Biochem. Biophys. 28: 371–380.

    Article  CAS  Google Scholar 

  211. Feyereisen, R., Langry, K. C., and Ortiz de Montellano, P. R., 1984, Self-catalyzed destruction of insect cytochrome P-450, Insect Biochem. 14: 19–26.

    Article  CAS  Google Scholar 

  212. Capello, S., Henderson, L., DeGrazia, F., Liberato, D., Garland, W., and Town, C., 1990, The effect of the cytochrome P-450 suicide inactivator, 1-aminobenzotriazole, on the in vivo metabolism and pharmacologic activity of flurazepam, Drug Metab. Dispos. 18: 190–196.

    PubMed  CAS  Google Scholar 

  213. Kaikaus, R. M., Chan, W. K., Lysenko, N., Ray, R., Ortiz de Montellano, P. R., and Bass, N. M., 1993, Induction of peroxisomal fatty acid (3-oxidation and liver fatty acid-binding protein by peroxisome proliferators: Mediation via the cytochrome P450IVA1 (n-hydroxylase pathway, J. Biol. Chem. 268: 9593–9603.

    PubMed  CAS  Google Scholar 

  214. Nichols, W. K., Larson, D. N., and Yost, G. S., 1990, Bioactivation of 3-methylindole by isolated rabbit lung cells, Toxicol. Appl. Pharmacol. 105: 264–270.

    Article  PubMed  CAS  Google Scholar 

  215. Whitman, D. W., and Carpenter, B. K., 1980, Experimental evidence for nonsquare cyclobutadiene as a chemically significant intermediate in solution, J. Am. Chem. Soc. 102: 4272–4274.

    Article  CAS  Google Scholar 

  216. Stearns, R. A., and Ortiz de Montellano, P. R., 1985, Inactivation of cytochrome P450 by a catalytically generated cyclobutadiene species, J. Am. Chem. Soc. 107: 234–240.

    Article  CAS  Google Scholar 

  217. Stejskal, R., Itabashi, M., Stanek, J., and Hruban, Z., 1975, Experimental porphyria induced by 3-[2-(2,4,6-trimethylphenyl)-thioethyl]-4-methylsydnone, Virchows Arch. 18: 83–100.

    CAS  Google Scholar 

  218. Ortiz de Montellano, P. R., and Grab, L. A., 1986, Inactivation of cytochrome P-450 during catalytic oxidation of a 3-[(arylthio)ethyl]sydnone: N-vinyl heure formation via insertion into the Fe-N bond, J. Am. Chem. Soc. 108: 5584–5589.

    Article  Google Scholar 

  219. White, E. H., and Egger, N., 1984, Reaction of sydnones with ozone as a method of deamination: On the mechanism of inhibition of monoamine oxidase by sydnones, J. Am. Chem. Soc. 106: 3701–3703.

    Article  CAS  Google Scholar 

  220. Chevrier, B., Weiss, R., Lange, M. C., Chottard,.1.-C., and Mansuy, D., 1981, An iron(III)-porphyrin complex with a vinylidene group inserted into an iron-nitrogen bond: Relevance of the structure of the active oxygen complex of catalase, J. Am. Chem. Soc. 103: 2899–2901.

    CAS  Google Scholar 

  221. Latos-Grazynski, L., Cheng, R.-J., La Mar, G. N., and Balch, A. L., 1981, Reversible migration of an axial carbene ligand into an iron-nitrogen bond of a porphyrin: Implications for high oxidation states of heure enzymes and heure catabolism, J. Am. Chem. Soc. 103: 4271–4273.

    Article  Google Scholar 

  222. Grab, L. A., Swanson, B. A., and Ortiz de Montellano, P. R., 1988, Cytochrome P-450 inactivation by 3-alkylsydnones: Mechanistic implications of N-alkyl and N-alkenyl heure adduct formation, Biochemistry 27: 4805–4814.

    Article  PubMed  CAS  Google Scholar 

  223. White, I. N. H., Smith, A. G., and Farmer, P. B., 1983, Formation of N-alkylated protoporphyrin IX in the livers of mice after diethylnitrosamine treatment, Biochem. J. 212: 599–608.

    PubMed  CAS  Google Scholar 

  224. Ding, X., and Coon, M. J., 1988, Cytochrome P-450-dependent formation of ethylene from N-nitrosoethylamines, Drug Metab. Dispos. 16: 265–269.

    PubMed  CAS  Google Scholar 

  225. Frater, Y., Brady, A., Lock, E. A., and De Matteis, F., 1993, Formation of N-methyl protoporphyrin in chemically-induced protoporphyria. Studies with a novel porphyrogenic agent, Arch. Toxicol. 67: 179–185.

    Article  PubMed  CAS  Google Scholar 

  226. De Matteis, F., and Gibbs, A. H., 1980, Drug-induced conversion of liver haem into modified porphyrins, Biochem. J. 187: 285–288.

    PubMed  Google Scholar 

  227. Holley, A. E., Frater, Y., Gibbs, A. H., De Matteis, F., Lamb, J. H., Farmer, P. B., and Naylor, S., 1991, Isolation of two N-monosubstituted protoporphyrins, bearing either the whole drug or a methyl group on the pyrrole nitrogen atom, from liver of mice given griseofulvin, Biochem. J. 274: 843–848.

    PubMed  CAS  Google Scholar 

  228. Gibbs, A. H., Naylor, S., Lamb, J. H., Frater, Y., and De Matteis, F., 1990, Copper-induced dealkylation studies of biologically N-alkylated porphyrins by fast atom bombardment mass spectrometry, Anal. Chini. Acta 241: 233–239.

    Article  CAS  Google Scholar 

  229. Holley, A., King, L. J., Gibbs, A. H., and De Matteis, F., 1990, Strain and sex differences in the response of mice to drugs that induce protoporphyria: Role of porphyrin biosynthesis and removal, J. Biochem. Toxicol. 5: 175–182.

    Article  PubMed  CAS  Google Scholar 

  230. De Matteis, F., Gibbs, A. H., Martin, S. R., and Milek, R. L. B., 1991, Labeling in vivo and chirality of griseofulvin-derived N-alkylated protoporphyrins, Biochem. J. 280: 813–816.

    PubMed  Google Scholar 

  231. Kunze, K. L., and Trager, W. F., 1993, Isoform-selective mechanism-based inhibition of human cytochrome P450 1A2 by furafylline, Chem. Res. Toxicol. 6: 649–656.

    Article  PubMed  CAS  Google Scholar 

  232. Clarke, S. E., Ayrton, A. D., and Chenery, R. J., 1994, Characterization of the inhibition of P4501A2 by furafylline, Xenobiotica 24: 517–526.

    Article  PubMed  CAS  Google Scholar 

  233. Hoag, M. K. P., Trevor, A. J., Kalir, A., and Castagnoli, N., 1987, NADPH-dependent metabolism, covalent binding to macromolecules, and inactivation of cytochrome(s) P450, Drug Metab. Dispos. 15: 485–490.

    PubMed  CAS  Google Scholar 

  234. Osawa, Y., and Coon, M. J., 1989, Selective mechanism-based inactivation of the major phenobarbital-inducible P-450 cytochrome from rabbit liver by phencyclidine and its oxidation product, the iminium compound, Drug Metab. Dispos. 17: 7–13.

    PubMed  CAS  Google Scholar 

  235. Owens, S. M., Gunnell, M., Laurenzana, E. M., and Valentine, J. L., 1993, Dose-and time-dependent changes in phencyclidine metabolite covalent binding in rats and the possible role of CYP2D1, J. Pharmacol. Exp. Ther. 265: 1261–1266.

    PubMed  CAS  Google Scholar 

  236. Brady, J. F., Dokko, J., Di Stefano, E. W., and Cho, A. K., 1987, Mechanism-based inhibition of cytochrome P-450 by heterocyclic analogues of phencyclidine, Drug Metab. Dispos. 15: 648–652.

    PubMed  CAS  Google Scholar 

  237. Koop, D. R., 1990, Inhibition of ethanol-inducible cytochrome P450IIE1 by 3-amino-1,2,4-triazole, Chem. Res. Toxicol. 3: 377–383.

    Article  PubMed  CAS  Google Scholar 

  238. Correia, M. A., Decker, C., Sugiyama, K., Caldera, P., Bornheim, L., Wrighton, S. A., Rettie, A. E., and Trager, W. F., 1987, Degradation of rat hepatic cytochrome P-450 heme by 3,5-dicarbethoxy-2,6dimethyl-4-ethyl-1,4-dihydropyridine to irreversibly bound protein adducts, Arch. Biochem. Biophys. 258: 436–451.

    Article  PubMed  CAS  Google Scholar 

  239. Tierney, D. J., Haas, A. L., and Koop, D. R., 1992, Degradation of cytochrome P450 2E1: Selective loss after labilization of the enzyme, Arch. Biochem. Biophys. 293: 9–16.

    Article  PubMed  CAS  Google Scholar 

  240. Osawa, Y., and Pohl, L. R., 1989, Covalent bonding of the prosthetic heme to protein: A potential mechanism for the suicide inactivation or activation of hemoproteins, Chem. Res. Toxicol. 2: 131–141.

    Article  PubMed  CAS  Google Scholar 

  241. Davies, H. S., Britt, S. G., and Pohl, L. R., 1986, Carbon tetrachloride and 2-isopropyl-4-pentenamideinduced inactivation of cytochrome P-450 leads to heme-derived protein adducts, Arch. Biochem. Biophys. 244: 387–352.

    Article  PubMed  CAS  Google Scholar 

  242. Guengerich, P., 1986, Covalent binding to apoprotein is a major fate of heme in a variety of reactions in which cytochrome P-450 is destroyed, Biochem. Biophys. Res. Commun. 138: 193–198.

    Article  PubMed  CAS  Google Scholar 

  243. Riddick, D. S., and Marks, G. S., 1990, Irreversible binding of heme to microsomal protein during inactivation of cytochrome P450 by alkyl analogues of 3,5-diethoxycarbonyl-1,4-dihydro-2,4,6trimethylpyridine, Biochem. Pharmacol. 40: 1915–1921.

    Article  PubMed  CAS  Google Scholar 

  244. Sugiyama, K., Yao, K., Rettie, A. E., and Correia, M. A., 1989, Inactivation of rat hepatic cytochrome P-450 isozymes by 3,5-dicarbethoxy-2,6-dimethyl-4-ethyl-1,4-dihydropyridine, Chem. Res. Toxicol. 2: 400–410.

    Article  PubMed  CAS  Google Scholar 

  245. Schaefer, W. H., Harris, T. M., and Guengerich, F. P., 1985, Characterization of the enzymatic and non-enzymatic peroxidative degradation of iron porphyrins and cytochrome P-450 heure, Biochemistry, 24: 3254–3263.

    Article  PubMed  CAS  Google Scholar 

  246. Nerland, D. E., Iba, M. M., and Mannering, G. J., 1981, Use of linoleic acid hydroperoxide in the determination of absolute spectra of membrane-bound cytochrome P450, Mol. Pharmacol. 19: 162–167.

    PubMed  CAS  Google Scholar 

  247. Karuzina, I. I., and Archakov, A. I., 1994, The oxidative inactivation of cytochrome P450 in monooxygenase reactions, Free Radical Biol. Med. 16: 73–97.

    Article  CAS  Google Scholar 

  248. Yao, K., Falick, A. M., Patel, N., and Correia, M. A., 1993, Cumene hydroperoxide-mediated inactivation of cytochrome P450 2B1: Identification of an active site heme-modified peptide, J. Biol. Chem. 268: 59–65.

    PubMed  CAS  Google Scholar 

  249. Correia, M. A., 1993, Drug-mediated heme-modification of cytochrome P450 apoproteins: Structural characterization and physiological implications, Toxicologist 13: 15.

    Google Scholar 

  250. Catalano, C. E., Choe, Y. S., and Ortiz de Montellano, P. R., 1989, Reactions of the protein radical in peroxide-treated myoglobin: Formation of a heure-protein cross-link, J. Biol. Chem. 264: 10534–10541.

    PubMed  CAS  Google Scholar 

  251. Choe, Y. S., and Ortiz de Montellano, P R., 1991, Differential additions to the myoglobin prosthetic heure group. Oxidative y-meso substitution by alkylhydrazines, J. Biol. Chem. 266: 8523–8530.

    PubMed  CAS  Google Scholar 

  252. Osawa, Y., Martin, B. M., Griffin, P. R., Yates, J. R., III, Shabanowitz, J., Hunt, D. F., Murphy, A. C., Chen, L., Cotter, R. J., and Pohl, L. R., 1990, Metabolism-based covalent bonding of the heme prosthetic group to its apoprotein during the reductive debromination of BrCC13 by myoglobin, J. Biol. Chem. 265: 10340–10346.

    PubMed  CAS  Google Scholar 

  253. Osawa, Y., Highet, R. J., Bax, A., and Pohl, L. R., 1991, Characterization by NMR of the heure-myoglobin adduct formed during the reductive metabolism of BrCCI3. Covalent bonding of the proximal histidine to the ring 1 vinyl group, J. Biol. Chem. 266: 3208–3214.

    PubMed  CAS  Google Scholar 

  254. Kindt, J. T., Woods, A., Martin, B. M., Cotter, R. J., and Osawa, Y., 1992, Covalent alteration of the prosthetic heure of human hemoglobin by BrCC13. Cross-linking of heure to cysteine residue 93, J. Biol. Chem. 267: 8739–8743.

    PubMed  CAS  Google Scholar 

  255. Correia, M. A., Yao, K., Wrighton, S. A., Waxman, D. J., and Rettie, A., 1992, Differential apoprotein loss of rat liver cytochromes P450 after their inactivation by 3,5-di carbethoxy-2,6-dimethyl-4-ethyl1,4-dihydropyridine: A case for distinct proteolytic mechanisms? Arch. Biochem. Biophys. 294: 493503.

    Google Scholar 

  256. Guzelian, P. S., and Swisher, R. W., 1979, Degradation of cytochrome P-450 haem by carbon tetrachloride and 2-allyl-2-isopropylacetamide in rat liver in vivo and in vitro: Involvement of non-carbon monoxide-forming mechanisms, Biochem. J. 184: 481–489.

    PubMed  CAS  Google Scholar 

  257. Ortiz de Montellano, P. R., and Kunze, K. L., 1980, Inactivation of hepatic cytochrome P-450 by allenic substrates, Biochem. Biophys. Res. Commun. 94: 443–449.

    Article  Google Scholar 

  258. Hanzlik, R. P., Kishore, V., and Tullman, R., 1979, Cyclopropylamines as suicide substrates for cytochromes P-450, J. Med. Chem. 22: 759–761.

    Article  PubMed  CAS  Google Scholar 

  259. Macdonald, T. L., Zirvi, K., Burka, L. T., Peyman, P., and Guengerich, F. P., 1982, Mechanism of cytochrome P-450 inhibition by cyclopropylamines, J. Am. Chem. Soc. 104: 2050–2052.

    Article  CAS  Google Scholar 

  260. Ortiz de Montellano, P. R., and Mathews, J. M., 1981, Inactivation of hepatic cytochrome P-450 by a 1,2,3-benzothiadiazole insecticide synergist, Biochem. Pharmacol. 30: 1138–1141.

    Article  Google Scholar 

  261. De Groot, H., and Haas, W., 1981, Self-catalyzed 02-independent inactivation of NADPH- or dithionite-reduced microsomal cytochrome P-450 by carbon tetrachloride, Biochem. Pharmacol. 30: 2343–2347.

    Article  PubMed  Google Scholar 

  262. Poli, G., Cheeseman, K., Slater, T. E, and Danzani, M. U., 1981, The role of lipid peroxidation in CC14-induced damage to liver microsomal enzymes: Comparative studies in vitro using microsomes and isolated liver cells, Chem. Biol. Interact. 37: 13–24.

    Article  PubMed  CAS  Google Scholar 

  263. Fernandez, G., Villaruel, M. C., de Toranzo, E. G. D., and Castro, J. A., 1982, Covalent binding of carbon to the heure moiety of cytochrome P-450 and its degradation products, Res. Commun. Chem. Pathol. Pharmacol. 35: 283–290.

    PubMed  CAS  Google Scholar 

  264. De Groot, H., Harnisch, U., and Noll, T., 1982, Suicidal inactivation of microsomal cytochrome P-450 by halothane under hypoxic conditions, Biochem. Biophys. Res. Commun. 107: 885–891.

    Article  PubMed  Google Scholar 

  265. Reiner, O., and Uehleke, H., 1971, Bindung von Tetrachlorkohlenstoff an reduziertes mikrosomales Cytochrome P-450 und an Ham, Hoppe-Seylers Z. Physiol. Chem. 352: 1048–1052.

    Article  PubMed  CAS  Google Scholar 

  266. Cox, P. J., King, L. J., and Parke, D. V., 1976, The binding of trichlorofluoromethane and other haloalkanes to cytochrome P-450 under aerobic and anaerobic conditions, Xenobiotica 6: 363–375.

    Article  PubMed  CAS  Google Scholar 

  267. Roland, W. C., Mansuy, D., Nastainczyk, W., Deutschmann, G., and Ullrich, V., 1977, The reduction of polyhalogenated methanes by liver microsomal cytochrome P450, Mol. Pharmacol. 13: 698–705.

    Google Scholar 

  268. Mansuy, D., and Fontecave, M., 1983, Reduction of benzyl halides by liver microsomes: Formation of 478 nm-absorbing sigma-alkyl-ferric cytochrome P-450 complexes, Biochem. Pharmacol. 32: 1871–1879.

    Article  PubMed  CAS  Google Scholar 

  269. Mansuy, D., Lange, M., Chottard, J. C., Bartoli, J. E, Chevrier, B., and Weiss, R., 1978, Dichlorocarbene complexes of iron(II)-porphyrins—Crystal and molecular structure of Fe(TPP)(CCl2)(H2O), Angew. Chem. Int. Ed. Engl. 17: 781–782.

    Article  Google Scholar 

  270. Ahr, H. J., King, L. J., Nastainczyk, W., and Ullrich, V., 1980, The mechanism of chloroform and carbon monoxide formation from carbon tetrachloride by microsomal cytochrome P-450, Biochem. Pharmacol. 29: 2855–2861.

    Article  PubMed  CAS  Google Scholar 

  271. Mansuy, D., Lange, M., Chottard, J. C., and Bartoli, J. F., 1978, Reaction du complexe carbenique Fe(II)(tetraphenylporphyrine)(CCl2) avec les amines primaires: Formation d’isonitriles, Tetrahedron Lett. 33: 3027–3030.

    Article  Google Scholar 

  272. Mansuy, D., and Battioni, J.-P., 1982, Isolation of sigma-alkyl-iron(Ill) or carbene-iron(II) complexes from reduction of polyhalogenated compounds by iron(II)-porphyrine: The particular case of halothane CF3CHC1Br, J. Chem. Soc. Chem. Commun. 1982: 638–639.

    Article  Google Scholar 

  273. Ruf, H. H., Aar, H., Nastainczyk, W., Ullrich, V., Mansuy, D., Battioni, J.-P., Montiel-Montoya, R., and Trautwein, A., 1984, Formation of a ferric carbanion complex from halothane and cytochrome P-450: Electron spin resonance, electronic spectra and model complexes, Biochemistry 23: 5300–5306.

    Article  CAS  Google Scholar 

  274. Castro, C. E., Wade, R. S., and Belser, N. O., 1985, Biodehalogenation: Reactions of cytochrome P-450 with polyhalomethanes, Biochemistry 24: 204–210.

    Article  PubMed  CAS  Google Scholar 

  275. Callot, H. J., and Scheffer, E., 1980, Model for the in vitro transformation of cytochrome P-450 into “green pigments,” Tetrahedron Lett. 21: 1335–1338.

    Article  CAS  Google Scholar 

  276. Lange, M., and Mansuy, D., 1981, N-Substituted porphyrins formation from carbene iron-porphyrin complexes: A possible pathway for cytochrome P-450 heure destruction, Tetrahedron Lett. 22: 2561–2564.

    Article  CAS  Google Scholar 

  277. Chevrier, B., Weiss, R., Lange, M., Chotard, J. C., and Mansuy, D., 1981, An iron(III)-porphyrin complex with a vinylidene group inserted into an iron-nitrogen bond: Relevance to the structure of the active oxygen complex of catalase, J. Am. Chem. Soc. 103: 2899–2901.

    Article  CAS  Google Scholar 

  278. Olmstead, M. M., Cheng, R.-J., and Balch, A. L., 1982, X-ray crystallographic characterization of an iron porphyrin with a vinylidene carbene inserted into an iron-nitrogen bond, Inorg. Chem. 21: 41434148.

    Google Scholar 

  279. Falzon, M., Nielsch, A., and Burke, M. D., 1986, Denaturation of cytochrome P-450 by indomethacin and other non-steroidal anti-inflammatory drugs: Evidence for a surfactant mechanism and a selective effect of a p-chlorophenyl moiety, Biochem. Pharmacol. 35: 4019–4024.

    Article  PubMed  CAS  Google Scholar 

  280. Guengerich, F. P., Dannan, G. A., Wright, T. S., Martin, M. V., and Kaminsky, L. S., 1982, Purification and characterization of liver microsomal cytochromes P-450: Electrophoretic, spectral, catalytic, and immunochemical properties and inducibility of eight isozymes isolated from rats treated with phenobarbital or beta-naphthoflavone, Biochemistry 21: 6019–6030.

    Article  PubMed  CAS  Google Scholar 

  281. Halpert, J. R., 1995, Structural basis of selective cytochrome P450 inhibition, Annu. Rev. Pharmacol. Toxicol. 35: 29–53.

    Article  PubMed  CAS  Google Scholar 

  282. Covey, D. F., 1988, Aromatase inhibitors: Specific inhibitors of oestrogen biosynthesis, in: Sterol Biosynthesis Inhibitors ( M. Berg and M. Plempel, eds.), Ellis Norwood, Cambridge, pp. 534–571.

    Google Scholar 

  283. Henderson, D., Habenicht, U.-F., Nishino, Y., Kerb, U., and El Etreby, M. E, 1986, Aromatase inhibitors and benign prostatic hyperplasie, J. Steroid Biochem. 25: 867–876.

    Article  PubMed  CAS  Google Scholar 

  284. Van Wauwe, J. P., and Janssen, P. A. J., 1989, Is there a case for P-450 inhibitors in cancer treatment? J. Med. Chem. 32: 2231–2239.

    Article  PubMed  Google Scholar 

  285. Kellis, J. T., Sheets, J. J., and Vickery, L. E., 1984, Amino-steroids as inhibitors and probes of the active site of cytochrome P-450scc. Effects on the enzyme from different sources, J. Steroid Biochem. 20: 671–676.

    Article  PubMed  CAS  Google Scholar 

  286. Sheets, J. J., and Vickery, L. E., 1983, Active site-directed inhibitors of cytochrome P-450scc: Structural and mechanistic implications of a side chain-substituted series of amino-steroids, J. Biol. Chem. 258: 11446–11452.

    PubMed  CAS  Google Scholar 

  287. Sheets, J. J., and Vickery, L. E., 1982, Proximity of the substrate binding site and the heme-iron catalytic site in cytochrome P-450scc, Proc. Natl. Acad. Sci. USA 79: 5773–5777.

    Article  PubMed  CAS  Google Scholar 

  288. Nagahisa, A., Foo, T., Gut, M., and Orme-Johnson, W. H., 1985, Competitive inhibition of cytochrome P-450scc by (22R)- and (228)-22-aminocholesterol: Side chain stereochemical requirements for C-22 amine coordination to the active-site heure, J. Biol. Chem. 260: 846–851.

    PubMed  CAS  Google Scholar 

  289. Vickery, L. E., and Singh, J., 1988, 22-Thio-23,24-bisnor-5-cholen-313-ol: An active site-directed inhibitor of cytochrome P450scc, J. Steroid Biochem. 29: 539–543.

    Google Scholar 

  290. Nagahisa, A., Spencer, R. W., and Orme-Johnson, W. H., 1983, Acetylenic mechanism-based inhibitors of cholesterol side chain cleavage by cytochrome P-450scc, J. Biol. Chem. 258: 6721–6723.

    PubMed  CAS  Google Scholar 

  291. Olakanmi, O., and Seybert, D. W., 1990, Modified acetylenic steroids as potent mechanism-based inhibitors of cytochrome P-450scc, J. Steroid Biochem. 36: 273–280.

    Article  PubMed  CAS  Google Scholar 

  292. Krueger, R. J., Nagahisa, A., Gut, M., Wilson, S. R., and Orme-Johnson, W. H., 1985, Effect of P-450scc inhibitors on corticosterone production by rat adrenal cells, J. Biol. Chem. 260: 852–859.

    PubMed  CAS  Google Scholar 

  293. Nagahisa, A., Orme-Johnson, W. H., and Wilson, S. R., 1984, Silicon mediated suicide inhibition: An efficient mechanism-based inhibitor of cytochrome P-450scc oxidation of cholesterol, J. Am. Chem. Soc. 106: 1166–1167.

    Article  CAS  Google Scholar 

  294. Trahanovsky, W. S., and Himstedt, A. L., 1974, Oxidation of organic compounds with cerium(1V). XX. Abnormally rapid rate of oxidative cleavage of (beta-trimethylsilylethyl)-phenylmethanol, J. Am. Chem. Soc. 96: 7974–7976.

    Article  CAS  Google Scholar 

  295. Vickery, L. E., and Singh, J., 1988, 22-Thio-23,24-bisnor-5-cholen-3ß-ol: An active site-directed inhibitor of cytochrome P450scc, J. Steroid Biochem. 29: 539–543.

    Google Scholar 

  296. Miao, E., Zuo, C., Nagahisa, A., Taylor, B. J., Joardar, S., Byon, C., Wilson, S. R., and Orme-Johnson, W. H., 1990, Cytochrome P450scc mediated oxidation of (20S)-22-nor-22-thiacholesterol: Characterization of mechanism-based inhibition, Biochemistry 29: 21–99.

    Google Scholar 

  297. Vanden Bossche, H., 1992, Inhibitors of P450-dependent steroid biosynthesis: From research to medical treatment, J. Steroid Biochem. Mol. Biol. 43: 1003–1021.

    Article  Google Scholar 

  298. Brodie, A. M. H., Marsh, D., and Brodie, H. J., 1979, Aromatase inhibitors. IV. Regression of hormone-dependent, mammary tumors in the rat with 4-acetoxy-4-androstene-3,17-dione, J. Steroid Biochem. 10: 423–429.

    Article  PubMed  CAS  Google Scholar 

  299. Henderson, I. C., and Canellos, G. P., 1980, Cancer of the breast (The past decade), N. Engl. J. Med. 302: 78–90.

    Article  PubMed  CAS  Google Scholar 

  300. Santen, R. J., Worgul, T. J., Samojlik, E., Interrante, A., Boucher, A. E., Lipton, A., Harvey, H. A., White, D. S., Smart, E., Cox, C., and Wells, S. A., 1981, A randomized trial comparing surgical adrenalectomy with aminoglutethimide plus hydrocortisone in women with advanced breast cancer, N. Engl. J. Med. 305: 545–551.

    Article  PubMed  CAS  Google Scholar 

  301. Brodie, A. M. H., Dowsett, M., and Coombes, R. C., 1988, Aromatase inhibitors as new endocrine therapy for breast cancer, Cancer Treat. Res. 39: 51–65.

    Article  PubMed  CAS  Google Scholar 

  302. Brodie, A. M. H., Banks, P. K., Inkster, S. E., Dowsett, M., and Coombes, R. C., 1990, Aromatase inhibitors and hormone-dependent cancers, J. Steroid Biochem. Mol. Biol. 37: 327–333.

    Article  PubMed  CAS  Google Scholar 

  303. Henderson, D., Habenicht, U.-F., Nishino, Y., and El Etreby, M. F., 1987, Estrogens and benign prostatic hyperplasia: The basis for aromatase inhibitor therapy, Steroids 50: 219–233.

    Article  PubMed  CAS  Google Scholar 

  304. Schweikert, H.-U., and Tunn, U. W., 1987, Effects of the aromatase inhibitor testolactone on human benign prostatic hyperplasia, Steroids 50: 191–199.

    Article  PubMed  CAS  Google Scholar 

  305. Phillips, G. B., Castelli, W. P., Abbott, R. D., and McNamara, P. M., 1983, Association of hyperestrogenemia and coronary heart disease in men in the Framingham cohort, Am. J. Med. 74: 863–869.

    Article  PubMed  CAS  Google Scholar 

  306. Harris, A. L., Powles, T. J., Smith, I. E., Coombes, R. C., Ford, H. T., Gazet, J. C., Harmer, C. L., Morgan, M., White, H., Parsons, C. A., and McKinna, J. A., 1983, Aminoglutethimide for the treatment of advanced postmenopausal breast cancer, Eur. J. Cancer Clin. Oncol. 19: 11–17.

    Article  PubMed  CAS  Google Scholar 

  307. Foster, A. B., Jarman, M., Leung, C.-S., Rowlands, M. G., Taylor, G. N., Plevey, R. G., and Sampson, P., 1985, Analogues of aminoglutethimide: Selective inhibition of aromatase, J. Med. Chem. 28: 200–204.

    Article  PubMed  CAS  Google Scholar 

  308. Foster, A. B., Jarman, M., Leung, C.-S., Rowlands, M. G., and Taylor, G. N., 1983, Analogues of aminoglutethimide: Selective inhibition of cholesterol side-chain cleavage, J. Med. Chem. 26: 50–54.

    Article  PubMed  CAS  Google Scholar 

  309. Bhatnagar, A. S., Hausler, A., Schieweck, K., Browne, L. J., Bowman, R., and Steele, R. E., 1990, Novel aromatase inhibitors, J. Steroid Biochem. Mol. Biol. 37: 363–367.

    Article  PubMed  CAS  Google Scholar 

  310. Lipton, A., Harvey, H. A., Demers, L. M., Hanagan, J. R., Mulagha, M. T., Kochak, G. M., Fitzsimmons, S., Sanders, S. I., and Santen, R. J., 1990, A phase I trial of CGS 16949A: A new aromatase inhibitor, Cancer 65: 1279–1285.

    Article  PubMed  CAS  Google Scholar 

  311. Santen, R. J., Demers, L. M., Adlercreutz, H., Harvey, H., Santner, S., Sanders, S., and Lipton, A., 1989, Inhibition of aromatase with CGS 16949A in postmenopausal women, J. Clin. Endocrinol. Metab. 68: 99–106.

    Article  PubMed  CAS  Google Scholar 

  312. Stein, R. C., Dowsett, M., Davenport, J., Hedley, A., Ford, H. T., Gazet, J.-C., and Coombes, R. C., 1990, Preliminary study of the treatment of advanced breast cancer in postmenopausal women with the aromatase inhibitor CGS 16949A, Cancer Res. 50: 1381–1384.

    PubMed  CAS  Google Scholar 

  313. Demers, L. M., Melby, J. C., Wilson, T. E., Lipton, A., Harvey, H. A., and Santen, R. J., 1990, The effects of CGS 16949A, an aromatase inhibitor on adrenal mineralocorticoid biosynthesis, J. Clin. Endocrinol. Metab. 70: 1162–1166.

    PubMed  CAS  Google Scholar 

  314. Wouters, W., De Coster, R., Tuman, R. W., Bowden, C. R., Bruynseels, J., Vanderpas, H., Van Rooy, P., Amery, W. K., and Janssen, P. A. J., 1989, Aromatase inhibition by R 76713: Experimental and clinical pharmacology, J. Steroid Biochem. 34: 427–430.

    Article  PubMed  CAS  Google Scholar 

  315. Wouters, W., De Coster, R., Van Dun, J., Krekels, M. D. W. G., Dillen, A., Raeymaekers, A., Freyne, E., Van Gelder, J., Sanz, G., Venet, M., and Janssen, M., 1990, Comparative effects of the aromatase inhibitor R76713 and of its enantiomers R83839 and R83842 on steroid biosynthesis in vitro and in vivo, J. Steroid Biochem. Mol. Biol. 37: 1049–1054.

    Article  CAS  Google Scholar 

  316. Vanden Bossche, H., Willemsens, G., Rods, I., Bellens, D., Moereels, H., Coene, M.-C., Le Jeune, L., Lauwers, W., and Janssen, P. A. J., 1990, R 76713 and enantiomers: Selective, nonsteroidal inhibitors of the cytochrome P450-dependent oestrogen synthesis, Biochem. Pharmacol. 40: 1707–1718.

    Article  Google Scholar 

  317. Flynn, G. A., Johnston, J. O., Wright, C. L., and Metcalf, B. W., 1981, The time-dependent inactivation of aromatase by 17–13-hydroxy-l0-methylthioestra-1,4-dien-3-one, Biochem. Biophys. Res. Commun. 103: 913–918.

    Article  PubMed  CAS  Google Scholar 

  318. Wright, J. N., van Leersum, P. T., Chamberlin, S. G., and Akhtar, M., 1989, Inhibition of aromatase by steroids substituted at C-19 with halogen, sulphur, and nitrogen, J. Chem. Soc. Perkin Trans. I 1989: 1647–1655.

    Article  Google Scholar 

  319. Wright, J. N., Slatcher, G., and Akhtar, M., 1991, “Slow-binding” sixth-ligand inhibitors of cytochrome P-450 aromatase. Studies with 19-thiomethyl-and 19-azido-androstenedione, Biochem. J. 273:533–539.

    Google Scholar 

  320. Delaisi, C., Coucet, B., Hartmann, C., Tric, B., Gourvest, J. F., and Lesuisse, D., 1992, RU54115, a tight-binding aromatase inhibitor potentially useful for the treatment of breast cancer, J. Steroid Biochem. Mol. Biol. 41: 773–777.

    Article  PubMed  CAS  Google Scholar 

  321. Bednarski, R J., and Nelson, S. D., 1989, Interactions of thiol-containing androgens with human placental aromatase, J. Med. Chem. 32: 203–213.

    Article  PubMed  CAS  Google Scholar 

  322. Geelen, J. A. A., Deckers, G. H., Van Der Wardt, J. T. H., Loozen, H. J. J., Tax, L. J. W., and Kloosterboer, H. J., 1991, Selection of 19-(ethyldithio)-androst-4-ene-3,17-dione (ORG 30958): A potent aromatase inhibitor in vivo, J. Steroid Biochem. Mol. Biol. 38: 181–188.

    Article  CAS  Google Scholar 

  323. Lovett, J. A., Darby, M. V., and Counsell, R. E., 1984, Synthesis and evaluation of 19-aza-and 19-aminoandrostenedione analogues as potential aromatase inhibitors, J. Med. Chem. 27: 734–740.

    Article  PubMed  CAS  Google Scholar 

  324. Shih, M.-J., Carrell, M. H., Carrell, H. L., Wright, C. L., Johnston, J. O., and Robinson, C. H., 1987, Stereoselective inhibition of aromatase by novel epoxysteroids, J. Chem. Soc. Chem. Commun. 1987: 213–214.

    Article  Google Scholar 

  325. Childers, W. E., and Robinson, C. H., 1987, Novel l0(3-thiiranyl steroids as aromatase inhibitors, J. Chem. Soc. Chem. Commun. 320–321.

    Google Scholar 

  326. Childers, W. E., Silverton, J. V., Kellis, J. T., Vickery, L. E., and Robinson, C. H., 1991, Inhibition of human placental aromatase by novel homologated 19-oxiranyl and 19-thiiranyl steroids, J. Med. Chem. 34: 1344–1349.

    Article  PubMed  CAS  Google Scholar 

  327. Kellis, J. T., Childers, W. E., Robinson, C. H., and Vickery, L. E., 1987, Inhibition of aromatase cytochrome P-450 by 10-oxirane and 10-thiirane substituted androgens. Implications for the structure of the active site, J. Biol. Chem. 262: 4421–4426.

    PubMed  CAS  Google Scholar 

  328. Njar, V. C. O., Safi, E., Silverton, J. V., and Robinson, C. H., 1993, Novel 10P-aziridinyl steroids: Inhibitors of aromatase, J. Chem. Soc. Perkin Trans. I N10: 1161–1168.

    Article  Google Scholar 

  329. Metcalf, B. W., Wright, C. L., Burkhan, J. R, and Johnston, J. O., 1981, Substrate-induced inactivation of aromatase by allenic and acetylenic steroids, J. Am. Chem. Soc. 103: 3221–3222.

    Article  CAS  Google Scholar 

  330. Johnston, J. O., 1987, Biological characterization of 10-(2-propynyl)estr-4-ene-3,17-dione (MDL 18,962), an enzyme-activated inhibitor of aromatase, Steroids 50: 105–120.

    Article  PubMed  CAS  Google Scholar 

  331. Johnston, J. O., Wright, C. L., and Metcalf, B. W., 1984, Time-dependent inhibition of aromatase in trophoblastic tumor cells in tissue culture, J. Steroid Biochem. 20: 1221–1226.

    Article  PubMed  CAS  Google Scholar 

  332. Covey, D. G., Hood, W. F., and Parikh, V. D., 1981, 10–13-Propynyl-substituted steroids: Mechanism-based enzyme-activated irreversible inhibitors of estrogen biosynthesis, J. Biol. Chem. 256: 1076–1079.

    Google Scholar 

  333. Brandt, M. E., Puett, D., Covey, D. F., and Zimniski, S. J., 1988, Characterization of pregnant mare’s serum gonadotropin-stimulated rat ovarian aromatase and its inhibition by 10-propargylestr-4-ene3,17-dione, J. Steroid Biochem. 34: 317–324.

    Article  Google Scholar 

  334. Marcotte, R. A., and Robinson, C. H., 1982, Synthesis and evaluation of 10-beta-substituted 4-estrene3,17-diones as inhibitors of human placental microsomal aromatase, Steroids 39: 325–344.

    Article  PubMed  CAS  Google Scholar 

  335. Numazawa, M., Mutsumi, A., Asano, N., and Ito, Y., 1993, A time-dependent inactivation of aromatase by 19-substituted androst-4-ene-3,6,17-diones, Steroids 58: 40–46.

    Article  PubMed  CAS  Google Scholar 

  336. Marcotte, R. A., and Robinson, C. H., 1982, Design of mechanism-based inactivators of human placental aromatase, Cancer Res. 42: 3322–3325.

    CAS  Google Scholar 

  337. Marcotte, R. A., and Robinson, C. H., 1982, Inhibition and inactivation of estrogen synthetase (aromatase) by fluorinated substrate analogues, Biochemistry 21: 2773–2778.

    Article  PubMed  CAS  Google Scholar 

  338. Numazawa, M., Mutsumi, A., Hoshi, K., Oshibe, M., Ishikawa, E., and Kigawa, H., 1991, Synthesis and biochemical studies of 16- and 19-substituted androst-4-enes as aromatase inhibitors, J. Med. Chem. 34: 2496–2504.

    Article  PubMed  CAS  Google Scholar 

  339. Mann, J., and Pietrzak, B., 1987, Preparation of aromatase inhibitors. Synthesis of 19,19-difluoro-4hydroxyandrost-4-ene-3,7-di one and related compounds, J. Chem. Soc. Perkin Trans. 11987: 385–388.

    Article  Google Scholar 

  340. Furth, P. S., and Robinson, C. H., 1989, Tritium release from [19–3H]19,19-difluoroandrost-4-ene3,17-dione during inactivation of aromatase, Biochemistry 28: 1254–1259.

    Article  PubMed  CAS  Google Scholar 

  341. Covey, D. F., and Hood, W. F., 1982, Aromatase enzyme catalysis is involved in the potent inhibition of estrogen biosynthesis caused by 4-acetoxy-and 4-hydroxy-4-androstene-3,17-dione, Mol. Pharmacol. 21: 173–180.

    PubMed  CAS  Google Scholar 

  342. Brodie, A. M. H., Garrett, W. M., Hendrickson, J. R., Tsai-Morris, C.-H., Marcotte, P. A., and Robinson, C. H., 1981, Inactivation of aromatase in vitro by 4-hydroxy-4-androstene-3,17-dione and 4-acetoxy4-androstene-3,17-dione and sustained effects in vivo, Steroids 38: 693–702.

    Article  PubMed  CAS  Google Scholar 

  343. Brodie, A. M. H., 1994, Aromatase inhibitors in the treatment of breast cancer, J. Steroid Biochem. Mol. Biol. 49: 281–287.

    Article  PubMed  CAS  Google Scholar 

  344. Di Salle, E., Giudici, D., Briatico, G., and Ornati, G., 1990, Novel irreversible aromatase inhibitors, Ann. N.Y. Acad. Sci. 595: 357–367.

    Article  PubMed  Google Scholar 

  345. Di Salle, E., Giudici, D., Ornati, G., Briatico, G., D’Alessio, R., Villa, V., and Lombardi, P., 1990, 4-Aminoandrostenedione derivatives: A novel class of irreversible aromatase inhibitors. Comparison with FCE 24304 and 4-hydroxyandrostenedione, J. Steroid Biochem. Mol. Biol. 37: 369–374.

    Google Scholar 

  346. Di Salle, E., Briatico, G., Giudici, D., Ornati, G., and Zaccheo, T., 1989, Aromatase inhibition and experimental antitumor activity of FCE 24304, MDL 18962 and SH 489, J. Steroid Biochem. 34: 431–434.

    Article  PubMed  Google Scholar 

  347. Marsh, D. A., Brodie, H. J., Garrett, W., Tsai-Morris, C.-H., and Brodie, A. M., 1985, Aromatase inhibitors. Synthesis and biological activity of androstenedione derivatives, J. Med. Chem. 28: 788–795.

    Article  PubMed  CAS  Google Scholar 

  348. Brodie, A. M. H., Brodie, H. J., Garrett, W. M., Hendrickson, J. R., Marsh, D. H., and Tsai-Morris, C.-H., 1982, Effect of an aromatase inhibitor, 1,4,6-androstatriene-3,17-dione, on 7,12-dimethyl-[a]anthracene-induced mammary tumors in the rat and its mechanism of action in vivo, Biochem. Pharmacol. 31: 2017–2023.

    Article  CAS  Google Scholar 

  349. Henderson, D., Norbisrath, G., and Kerb, U., 1986, 1-Methyl-1,4-androstadiene-3,17-dione (SH 489): Characterization of an irreversible inhibitor of estrogen biosynthesis, J. Steroid Biochem. 24: 303–306.

    Google Scholar 

  350. Numazawa, M., Mutsumi, A., Hoshi, K., and Tanaka, Y., 1992, Androst-5-ene-7,17-dione: A novel class of suicide substrate of aromatase, Biochem. Biophys. Res. Commun. 186: 32–39.

    Article  PubMed  CAS  Google Scholar 

  351. Covey, D. F., and Hood, W. F., 1981, Enzyme-generated intermediates derived from 4-androstene3,6,17-trione and 1,4,6-androstatriene-3,17-dione cause a time-dependent decrease in human placental aromatase activity, Endocrinology 108: 1597–1599.

    Article  PubMed  CAS  Google Scholar 

  352. Numazawa, M., Tsuji, M., and Mutsumi, A., 1987, Studies on aromatase inhibition with 4-androstene3,6,17-trione: Its 3[3-reduction and time-dependent irreversible binding to aromatase with human placental microsomes, J. Steroid Biochem. 28: 337–344.

    Article  PubMed  CAS  Google Scholar 

  353. Numazawa, M., Midzuhashi, K., and Nagaoka, M., 1994, Metabolic aspects of the 113-proton and the 19-methyl group of androst-4-ene-3,6,17-trione during aromatization by placental microsomes and inactivation of aromatase, Biochem. Pharmacol. 47: 717–726.

    Article  PubMed  CAS  Google Scholar 

  354. Longcope, C., Femino, A., and Johnston, J.O., 1988, Inhibition of peripheral aromatization in baboons by an enzyme-activated aromatase inhibitor (MDL 18,962), Endocrinology 122: 2007–2011.

    Article  PubMed  CAS  Google Scholar 

  355. Johnston, J. O., 1990, Studies with the steroidal aromatase inhibitor, 19-acetylenic androstenedione (MDL 18,962), J. Cancer Res. Clin. Oncol. 116: 880.

    Google Scholar 

  356. Covey, D. F., Hood, W. F., Bensen, D. D., and Carrell, H. L., 1984, Hydroperoxides as inactivators of aromatase: 10-Beta-hydroperoxy-4-estrene-3,17-dione, crystal structure and inactivation characteristics, Biochemistry 23: 5398–5406.

    Article  PubMed  CAS  Google Scholar 

  357. Covey, D. F., Hood, W. F., and McMullan, P. C., 1986, Studies of the inactivation of human placental aromatase by 17a-ethynyl-substituted 1013-hydroperoxy and related 19-nor steroids, Biochem. Pharmacol. 35: 1671–1674.

    Article  PubMed  CAS  Google Scholar 

  358. Bednarski, P. J., Porubek, D. J., and Nelson, S. D., 1985, Thiol-containing androgens as suicide substrates of aromatase, J. Med. Chem. 28: 775–779.

    Article  PubMed  CAS  Google Scholar 

  359. Shih, M.-J., Carrell, M. H., Carrell, H. L., Wright, C. L., Johnston, J. O., and Robinson, C. H., 1987, Stereoselective inhibition of aromatase by novel epoxysteroids. J. Chem Soc. Chem. Commun. 1987: 213–214.

    Article  Google Scholar 

  360. Burkhart, J. P., Peet, N. P., Wright, C. L., and Johnston, J. O., 1991, Novel time-dependent inhibitors of human placental aromatase, J. Med. Chem. 34: 1748–1750.

    Article  PubMed  CAS  Google Scholar 

  361. Vanden Bossche, H., Willemsens, G., Cools, W., Marichal, P., and Lauwers, W., 1983, Hypothesis on the molecular basis of the antifungal activity of N-substituted imidazoles and triazoles, Biochem. Soc. Trans. 11: 665–667.

    PubMed  Google Scholar 

  362. Mercer, E. I., 1991, Sterol biosynthesis inhibitors: Their current status and modes of action, Lipids 26: 584–597.

    Article  PubMed  CAS  Google Scholar 

  363. Berg, M., and Plempel, M. (eds.), 1988, Sterol Biosynthesis Inhibitors, Ellis Horwood, Cambridge.

    Google Scholar 

  364. Vanden Bossche, H., Lauwers, W., Willemsens, G., Marichal, P., Cornelissen, F., and Cools, W., 1984, Molecular basis for the antimycotic and antibacterial activity of N-substituted imidazoles and triazoles: The inhibition of isoprenoid biosynthesis, Pestic. Sci. 15: 188–198.

    Article  Google Scholar 

  365. Heeres, J., De Brabander, M., and Vanden Bossche, H., 1982, Ketoconazole: Chemistry and basis for selectivity, in: Current Chemotherapy and Immunotherapy, Vol. 2 ( P. Periti and G. G. Grossi, eds.), American Society of Microbiology, Washington, DC, pp. 1007–1009.

    Google Scholar 

  366. Willemsens, G., Cools, W., and Vanden Bossche, H., 1980, Effects of miconazole and ketoconazole on sterol synthesis in a subcellular fraction of yeast and mammalian cells, in: The Host—Invader Interplay ( H. Vanden Bossche, ed.), Elsevier/North-Holland, Amsterdam, pp. 691–694.

    Google Scholar 

  367. Murray, M., Ryan, A. J., and Little, R J., 1982, Inhibition of rat hepatic microsomal aminopyrine N-demethylase activity by benzimidazole derivatives: Quantitative structure—activity relationships, J. Med. Chem. 25: 887–892.

    Article  PubMed  CAS  Google Scholar 

  368. Santen, R. J., Vanden Bossche, H., Symoens, J., Brugmans, J., and DeCoster, R., 1983, Site of action of low dose ketoconazole or androgen biosynthesis in men, J. Clin. Endocrinol. Metab. 57: 732–736.

    Article  PubMed  CAS  Google Scholar 

  369. Gander, R, Mercer, E. I., Baldwin, B. C., and Wiggins, T. E., 1983, A comparison of the potency of some fungicides as inhibitors of sterol 14-demethylation, Pestic. Biochem. Physiol. 19: 1–10.

    Article  Google Scholar 

  370. Nes, W. R., 1974, Role of sterols in membranes, Lipids 9: 596–612.

    Article  PubMed  CAS  Google Scholar 

  371. Yeagle, R. L., Martin, R. B., Lala, A. K., Lin, H.-K., and Block, K., 1977, Differential effects of cholesterol and lanosterol on artificial membranes, Proc. Natl. Acad. Sci. USA 74: 4924–4926.

    Article  PubMed  CAS  Google Scholar 

  372. Freier, C. E., Laderson, R. C., and Sibert, D. F., 1979, Membrane phospholipid alterations in response to sterol depletion of LM cells, J. Biol. Chem. 254: 6909–6916.

    Google Scholar 

  373. Dolle, R. E., Allaudeen, H. S., and Kruse, L. I., 1990, Design and synthesis of 14a-methyl-15-aza-ohomosterols as novel antimycotics, J. Med. Chem. 33: 877–880.

    Article  PubMed  CAS  Google Scholar 

  374. Frye, L. L., Cusack, K. E, Leonard, D. A., and Anderson, J. A., 1994, Oxolanosterol oximes: Dual-action inhibitors of cholesterol biosynthesis, J. Lipid Res. 35: 1333–1344.

    PubMed  CAS  Google Scholar 

  375. Aoyama, Y., Yoshida, Y., Sonoda, Y., and Sato, Y., 1987, 7-Oxo-24,25-dihydrolanosterol: A novel lanosterol 14a-demethylase (P-450 140M) inhibitor which blocks electron transfer to the oxyferro intermediate, Biochim. Biophys. Acta 922: 270–277.

    Google Scholar 

  376. Cooper, A. B., Wright, J. J., Ganguly, A. K., Desai, J., Loenberg, D., Parmegiani, R., Feingold, D. S., and Sud, I. J., 1989, Synthesis of 14-a-aminomethyl substituted lanosterol derivatives; inhibitors of fungal ergosterol biosynthesis, J. Chem. Soc. Chem. Commun. 1989: 898–900.

    Article  Google Scholar 

  377. Frye, L. L., Cusack, K. P., and Leonard, D. A., 1993, 32-Methyl-32-oxylanosterols: Dual-action inhibitors of cholesterol biosynthesis, J. Med. Chem. 36: 410–416.

    Google Scholar 

  378. Frye, L. L., and Robinson, C. H., 1988, Novel inhibitors of lanosterol 14a-methyl demethylase, a critical enzyme in cholesterol biosynthesis, J. Chem. Soc. Chem. Commun. 1988: 129–131.

    Article  Google Scholar 

  379. Mayer, R. J., Adams, J. L., Bossard, M. J., and Berkhout, T. A., 1991, Effects of a novel lanosterol 14a-demethylase inhibitor on the regulation of 3-hydroxy-3-methylglutaryl-coenzyme A reductase in Hep G2 cells, J. Biol. Chem. 266: 20070–20078.

    PubMed  CAS  Google Scholar 

  380. Frye, L. L., and Robinson, C. H., 1990, Synthesis of potential mechanism-based inactivators of lanosterol 14a-demethylase, J. Org. Chem. 55: 1579–1584.

    Article  CAS  Google Scholar 

  381. Tuck, S. F., Robinson, C. H., and Silverton, J. V., 1991, Assessment of the active-site requirements of lanosterol 14a-demethylase: Evaluation of novel substrate analogues as competitive inhibitors, J. Org. Chem. 56: 1260–1266.

    Article  CAS  Google Scholar 

  382. Bossard, M. J., Tomaszek, T. A., Gallagher, T., Metcalf, B. W., and Adams, J. L., 1991, Steroidal acetylenes: Mechanism-based inactivators of lanosterol 14a-demethylase, Bioorg. Chem. 19: 418–432.

    Article  CAS  Google Scholar 

  383. Trzaskos, J. M., Magolda, R. L., Favata, M. F., Fischer, R. T., Johnson, P. R., Chen, H. W., Ko, S. S., Leonard, D. A., and Gaylor, J. L., 1993, Modulation of 3-hydroxy-3-methylglutaryl-CoA reductase by 15a-fluorolanost-7-en-3 3-ol. A mechanism-based inhibitor of cholesterol biosynthesis, J. Biol. Chem. 268: 22591–22599.

    PubMed  CAS  Google Scholar 

  384. Angelastro, M. R., Laughlin, M. E., Schatzman, G. L., Bey, P., and Blohm, T. R., 1989, 17β-(Cyclopropylamino)-androst-5-en-3β-ol, a selective mechanism-based inhibitor of cytochrome P45017α (steroid 17α-hydroxylase/C17–20 lyase), Biochem. Biophys. Res. Commun. 162: 1571–1577.

    Google Scholar 

  385. Berg, A. M., Kickman, A. B., Miao, E., Cochran, A., Wilson, S. R., and Orme-Johnson, W. H., 1990, Effects of inhibitors of cytochrome P-45017α on steroid production in mouse Leydig cells and mouse and pig testes microsomes, Biochemistry 29: 2193.

    Google Scholar 

  386. Viger, A., Coustal, S., Perard, S., Chappe, B., and Marquet, A., 1988, Synthesis and activity of new inhibitors of aldosterone biosynthesis, J. Steroid Biochem. 30: 469–472.

    Article  PubMed  CAS  Google Scholar 

  387. Viger, A., Coustal, S., Perard, S., Piffeteau, A., and Marquet, A., 1989, 18-Substituted progesterone derivatives as inhibitors of aldosterone biosynthesis, J. Steroid Biochem. 33: 119–124.

    Google Scholar 

  388. Gomez-Sanchez, C. E., Chiou, S., and Yamakita, N., 1993, 18-Ethynyl-deoxycorticosterone inhibition of steroid production is different in freshly isolated compared to cultured calf zona glomerulosa cells, J. Steroid Biochem. Mol. Biol. 46: 805–810.

    Google Scholar 

  389. Johnston, J. O., Wright, C. L., Bohnke, R. A., and Kastner, P. R., 1991, Inhibition of aldosterone biosynthesis in primates by 18-acetylenic deoxycorticosterone, Endocrinology 128(Suppl.):Abstract 24.

    Google Scholar 

  390. Shak, S., and Goldstein, I., 1984, Omega-oxidation is the major pathway for the catabolism of leukotriene B4 in human polymorphonuclear leukocytes, J. Biol. Chem. 259: 10181–10187.

    PubMed  CAS  Google Scholar 

  391. Kupfer, D., 1982, Endogenous substrates of monooxygenases: Fatty acids and prostaglandins, in: Hepatic Cytochrome P450 Monooxygenase System ( J. B. Sehenkman and D. Kupfer, eds.), Pergamon Press, Elmsford, NY, pp. 157–190.

    Google Scholar 

  392. Kupfer, D., 1980, Endogenous substrates of monooxygenases: Fatty acids and prostaglandins, Pharmacol. Ther. A 11: 469–496.

    Article  CAS  Google Scholar 

  393. Fulco, A. J., 1991, P450BM-3 and other inducible bacterial P450 cytochromes: Biochemistry and regulation, Anne. Rev. Pharmacol. Toxicol. 31: 177–203.

    Article  CAS  Google Scholar 

  394. Ortiz de Montellano, P. R., and Reich, N. O., 1984, Specific inactivation of hepatic fatty acid hydroxylases by acetylenic fatty acids, J. Biol. Chem. 259: 4136–4141.

    Google Scholar 

  395. Salaun, J. P., Reichhart, D., Simon, A., Durst, E, Reich, N. O., and Ortiz de Montellano, P. R., 1984, Autocatalytic inactivation of plant cytochrome P-450 enzymes: Selective inactivation of the lauric acid in-chain hydroxylase from Helianthus tuberosus L. by unsaturated substrate analogs, Arch. Biochem. Biophys. 232: 1–7.

    Article  PubMed  CAS  Google Scholar 

  396. CaJacob, C. A., and Ortiz de Montellano, P. R., 1986, Mechanism-based in vivo inactivation of lauric acid hydroxylases, Biochemistry 25: 4705–4711.

    Article  PubMed  CAS  Google Scholar 

  397. Hirt, D. L., and Jacobson, H. R., 1991, Functional effects of cytochrome P450 arachidonate metabolites in the kidney, Semin. Nephrol. 11: 148–155.

    PubMed  CAS  Google Scholar 

  398. McGiff, J. C., Quilley, C. P., and Carroll, M. A., 1993, The contribution of cytochrome P450-dependent arachidonate metabolites to integrated renal function, Steroids 58: 573–579.

    Article  PubMed  CAS  Google Scholar 

  399. Zou, A.-P., Ma, Y.-H., Sui, Z.-H., Ortiz de Montellano, P. R., Clark, J. E., Masters, B. S., and Roman, R. J., 1994, Effects of 17-octadecynoic acid, a suicide-substrate inhibitor of cytochrome P450 fatty acid co-hydroxylase, on renal function in rats, J. Pharmacol. Exp. Ther. 268: 474–481.

    PubMed  CAS  Google Scholar 

  400. Shak, S., Reich, N. O., Goldstein, I. M., and Ortiz de Montellano, P. R., 1985, Leukotriene B4 w-hydroxylase in human polymorphonuclear leukocytes: Suicidal inactivation by acetylenic fatty acids, J. Biol. Chem. 260: 13023–13028.

    PubMed  CAS  Google Scholar 

  401. Williams, D. E., Muerhoff, A. S., Reich, N. O., CaJacob, C. A., Ortiz de Montellano, P. R., and Masters, B. S. S., 1989, Prostaglandin and fatty acid w and (w-1) oxidation in rabbit lung. Acetylenic fatty acid mechanism based inactivators as specific inhibitors, J. Biol. Chem. 264: 749–756.

    PubMed  Google Scholar 

  402. Shirane, N., Sui, Z., Peterson, J. A., and Ortiz de Montellano, P. R., 1993, Cytochrome P4508M-3 (CYP102): Regiospecificity of oxidation of co-unsaturated fatty acids and mechanism-based inactivation, Biochemistry 32: 13732–13741.

    Article  PubMed  CAS  Google Scholar 

  403. Kikuta, Y., Kusunose, E., Endo, K., Yamamoto, S., Sogawa, K., Fujii-Kuriyama, Y., and Kusunose, M., 1993, A novel form of cytochrome P-450 family 4 in human polymorphonuclear le ukocytes. cDNA cloning and expression of leukotriene B4 w-hydroxylase, J. Biol. Chem. 268: 9376–9380.

    PubMed  CAS  Google Scholar 

  404. Clancy, R. M., Dahinden, C. A., and Hugli, T. E., 1984, Oxidation of leukotrienes at the w end: Demonstration of a receptor for the 20-hydroxy derivative of leukotriene B4 on human neutrophils and implications for the analysis of leukotriene receptors, Proc. Natl. Acad. Sci. USA 81: 5729–5733.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

de Montellano, P.R.O., Correia, M.A. (1995). Inhibition of Cytochrome P450 Enzymes. In: de Montellano, P.R.O. (eds) Cytochrome P450. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-2391-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2391-5_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3248-8

  • Online ISBN: 978-1-4757-2391-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics