Skip to main content

Comparison of the Peroxidase Activity of Hemoproteins and Cytochrome P450

  • Chapter
Cytochrome P450

Abstract

Shakespeare recognized centuries ago the value of a foil for highlighting similarities and differences between characters. Comparative analysis is also an effective mechanism for studying related proteins to better understand the structural basis of their functions. Indeed, there are many similarities between peroxidases and cytochromes P450 (P450s) in terms of prosthetic group and catalytic mechanism. However, there are also important differences in three-dimensional structure, reactions catalyzed, and interactions with other proteins. As a result, these two classes of oxidizing enzymes evolved to fulfill very different functions. Peroxidases and P450s are hemeproteins; both react with peroxides to generate higher oxidation states; and both catalyze oxidation and oxygenation reactions that involve electron transfer from the substrate to the higher oxidation states. The major differences between peroxidases and P450s include the ability of P450s to accept electrons from a reductase; the redox potentials of the higher oxidation states; and the ability of P450s to generate the equivalent of a metal-bound peroxide by reduction of O2 at the heme center during catalytic turnover.

Osric: You are not ignorant of what excellence Laertes is—

Hamlet: I dare not confess that, lest I should compare with him in excellence; but to know a man well were to know himself.

William Shakespeare,

The Tragedy of Hamlet, Prince of Denmark

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hrycay, E., and O’Brien, P. J., 1971, Cytochrome P-450 as a microsomal peroxidase utilizing a lipid peroxide substrate, Arch. Biochem. Biophys. 147: 14–27.

    Article  PubMed  CAS  Google Scholar 

  2. Hrycay, E. G., and O’Brien, P. J., 1972, Cytochrome P450 as a microsomal peroxidase in steroid hydroperoxide reduction, Arch. Biochem. Biophys. 153: 480–494.

    Article  PubMed  CAS  Google Scholar 

  3. White, R. E., and Coon, M. J., 1980, Oxygen activation by cytochrome P-450, Annu. Rev. Biochem. 49: 315–356.

    Article  PubMed  CAS  Google Scholar 

  4. Dunford, H. B., and Stillman, J. S., 1976, On the function and mechanism of action of peroxidases, Coord. Chem. Rev. 19: 187–251.

    Article  CAS  Google Scholar 

  5. Marnett, L. J., Weller, P. A., and Battista, J. R., 1986, Comparison of the peroxidase activity of hemeproteins and cytochrome P 450, in: Cytochrome P-450 (P. R. Ortiz de Montellano, ed.), Plenum Press, New York, pp. 29–76.

    Google Scholar 

  6. Fruton, J. S., 1972, Molecules and Life: Historical Essays on the Interplay of Chemistry and Biology, Wiley—Interscience, New York.

    Google Scholar 

  7. Saunders, B. C., Holmes-Siedel, A. G., and Stark, B. P., 1964, Peroxidases, Butterworths, London.

    Google Scholar 

  8. Yamazaki, I., 1974, Peroxidase, in: Molecular Mechanisms of Oxygen Activation ( O. Hayaishi, ed.), Academic Press, New York, pp. 535–558.

    Google Scholar 

  9. Saunders, B. C., 1975, Peroxidases and catalases, in: Inorganic Biochemistry ( G. L. Eichhorn, ed.), Elsevier, Amsterdam, pp. 988–1021.

    Google Scholar 

  10. Everse, J., Everse, K. E., and Grisham, M. B. (eds.), 1991, Peroxidases in Chemistry and Biology, CRC Press, Boca Raton, FL.

    Google Scholar 

  11. Zeng, J., and Fenna, R. E., 1992, X-ray crystal structure of canine myeloperoxidase at 3 Â resolution, J. Mol. Biol. 226: 185–207.

    Article  PubMed  CAS  Google Scholar 

  12. Edwards, S. L., Raag, R., Wariishi, H., Gold, M. H., and Poulos, T. L., 1993, Crystal structure of lignin peroxidase, Proc. Natl. Acad. Sci. USA 90: 750–754.

    Article  PubMed  CAS  Google Scholar 

  13. Poulos, T. L., Edwards, S. L., Wariishi, H., and Gold, M. H., 1993, Crystallographic refinement of lignin peroxidase at 2 A, J. Biol. Chem. 268: 4429–4440.

    PubMed  CAS  Google Scholar 

  14. Picot, D., Loll, P. J., and Garavito, R. M., 1994, The X-ray crystal structure of the membrane protein prostaglandin H2 synthase-1, Nature 367: 243–249.

    Article  PubMed  CAS  Google Scholar 

  15. Kunishima, N., Fukuyama, K., Matsubara, H., Hatanaka, H., Shibano, Y., and Amachi, T., 1994, Crystal structure of the fungal peroxidase from Arthromyces ramosus at 1.9A resolution. Structural comparisons with the lignin and cytochrome c peroxidases, J. Mol. Biol. 235: 331–344.

    Article  PubMed  CAS  Google Scholar 

  16. Poulos, T. L., Freer, S. T., Alden, R. A., Edwards, S. L., Skogland, U., Takio, K., Eriksson, B., Xuong, N.-H., Yonetani, T., and Kraut, J., 1980, The crystal structure of cytochrome c peroxidase, J. Biol. Chem. 255: 575–580.

    PubMed  CAS  Google Scholar 

  17. Murthy, M. R. N., Reid, T. J., III, Sicignano, A., Tanaka, N., and Rossmann, M.G., 1981, Structure of beef liver catalase, J. Mol. Biol. 152: 465–499.

    Article  PubMed  CAS  Google Scholar 

  18. Klebanoff, S. J., 1991, Myeloperoxidase: Occurrence and biological function, in: Peroxidases in Chemistry and Biology (J. Everse, K. E. Everse, and M. B. Grisham, eds.), CRC Press, Boca Raton, FL,Vol. 1, pp. 1–35.

    Google Scholar 

  19. Hamberg, M., Svensson, J., Wakabayashi, T., and Samuelsson, B., 1974, Isolation and structure of two prostaglandin endoperoxides that cause platelet aggregation, Proc. Natl. Acad. Sci. USA 71: 345349.

    Google Scholar 

  20. Nugteren, D. H., and Hazelhof, E., 1973, Isolation and properties of intermediates in prostaglandins biosynthesis, Biochim. Biophys. Acta 326: 448–461.

    Article  PubMed  CAS  Google Scholar 

  21. Johnson, K. R., Nauseef, W. M., Care, A., Wheelock, M. J., Shane, S., Hudson, S., Koeffler, H. P., Selsted, M., Miller, C., and Rovera, G., 1987, Characterization of cDNA clones for human myeloperoxidase: Predicted amino acid sequence and evidence for multiple mRNA species, Nucleic Acids Res. 15: 2013–2028.

    Article  PubMed  CAS  Google Scholar 

  22. Morishita, K., Kubota, N., Asano, S., Kaziro, Y., and Nagata, S., 1987, Molecular cloning and characterization of cDNA for human myeloperoxidase, J. Biol. Chem. 262: 3844–3851.

    PubMed  CAS  Google Scholar 

  23. Sakamaki, K., Tomonaga, M., Tsukui, K., and Nagata, S., 1989, Molecular cloning and characterization of a chromosomal gene for human eosinophil peroxidase, J. Biol. Chem. 264: 16828–16836.

    PubMed  CAS  Google Scholar 

  24. Kimura, S., Kotani, T., McBride, O. W., Umeki, K., Hirai, K., Nakayama, T., and Ohtaki, S., 1987, Human thyroid peroxidase: Complete cDNA and protein sequence, chromosome mapping, and identification of two alternately spliced mRNAs, Proc. Natl. Acad. Sci. USA 84: 5555–5559.

    Article  PubMed  CAS  Google Scholar 

  25. Merlie, J. P., Fagan, D., Mudd, J., and Needleman, P., 1988, Isolation and characterization of the complementary DNA for sheep seminal vesicle prostaglandin endoperoxide synthase (cyclooxygenase), J. Biol. Chem. 263: 3550–3553.

    PubMed  CAS  Google Scholar 

  26. DeWitt, D. L., and Smith, W. L., 1988, Primary structure of prostaglandin G/H synthase from sheep vesicular gland determined from the complementary DNA sequence, Proc. Natl. Acad. Sci. USA 85: 1412–1416.

    Article  PubMed  CAS  Google Scholar 

  27. Yokoyama, C., Takai, T., and Tanabe, T., 1988, Primary structure of sheep prostaglandin endoperoxide synthase deduced from cDNA sequence, FEBS Lett: 231: 347–351.

    Article  PubMed  CAS  Google Scholar 

  28. Dull, T. J., Uyeda, C., Strosberg, A. D., Nedwin, G., and Seilhamer, J. J., 1990, Molecular cloning of cDNAs encoding bovine and human lactoperoxidase, DNA Cell Biol. 9: 499–509.

    Article  PubMed  CAS  Google Scholar 

  29. Cals, M.-M., Mailliart, P., Brignon, G., Anglade, P., and Dumas, B. R., 1991, Primary structure of bovine lactoperoxidase, a fourth member of a mammalian heme peroxidase family, Eur. J. Biochem. 198: 733–739.

    Article  PubMed  CAS  Google Scholar 

  30. Poulos, T. L., and Fenna, R. E., 1994, Peroxidases: Structure, function, and engineering, in: Metal Ions in Biological Systems: Metalloenzymes Involving Amino Acid-Residue and Related Radicals ( H. Sigel and A. Sigel, eds.), Dekker, New York, pp. 25–75.

    Google Scholar 

  31. Markey, C. M., Alward, A., Weller, P. E., and Marnett, L. J., 1987, Quantitative studies of hydroperoxide reduction by prostaglandin H synthase, J. Biol. Chem. 262: 6266–6279.

    PubMed  CAS  Google Scholar 

  32. Kulmacz, R. J., 1986, Prostaglandin H synthase and hydroperoxides: Peroxidase reaction and inactivation kinetics, Arch. Biochem. Biophys. 249: 273–285.

    Article  PubMed  CAS  Google Scholar 

  33. Hsuanyu, Y., and Dunford, H. B., 1992, Prostaglandin H synthase kinetics. The effect of substituted phenols on cyclooxygenase activity and the substituent effect on phenolic peroxidatic activity, J Biol. Chem. 267: 17649–17657.

    PubMed  CAS  Google Scholar 

  34. Hsuanyu, Y., and Dunford, H. B., 1990, Kinetics of the reaction of prostaglandin H synthase compound II with ascorbic acid, Arch. Biochem. Biophys. 281: 282–286.

    Article  PubMed  CAS  Google Scholar 

  35. Bakovic, M., and Dunford, H. B., 1993, Kinetics of the oxidation ofp-coumaric acid by prostaglandin H synthase and hydrogen peroxide, Biochemistry 32: 833–840.

    Article  PubMed  CAS  Google Scholar 

  36. Sun, W., and Dunford, H. B., 1993, Kinetics and mechanism of the peroxidase-catalyzed iodination of tyrosine, Biochemistry 32: 1324–1331.

    Article  PubMed  CAS  Google Scholar 

  37. Smith, W. L., Eling, T. E., Kulmacz, R. J., Marnett, L. J., and Tsai, A., 1992, Tyrosyl radicals and their role in hydroperoxide-dependent activation and inactivation of prostaglandin endoperoxide synthase, Biochemistry 31: 3–7.

    Article  PubMed  CAS  Google Scholar 

  38. DeWitt, D. L., El-Harith, E. A., Kraemer, S. A., Andrews, M. J., Yao, E. F., Armstrong, R. L., and Smith, W. L., 1990, The aspirin and heme-binding sites of ovine and murine prostaglandin endoperoxide synthases, J. Biol. Chem. 265: 5192–5198.

    PubMed  CAS  Google Scholar 

  39. Shimokawa, T., Kulmacz, R. J., DeWitt, D. L., and Smith, W. L., 1990, Tyrosine 385 of prostaglandin endoperoxide synthase is required for cyclooxygenase catalysis, J. Biol. Chem. 265: 20073–20076.

    PubMed  CAS  Google Scholar 

  40. Kennedy, T. A., Smith, C. J., and Marnett, L. J., 1994, Investigation of the role of cysteines in catalysis by prostaglandin endoperoxide synthase, J. Biol. Chem. 269: 27357–27364.

    PubMed  CAS  Google Scholar 

  41. Welinder, K. G., 1992, Superfamily of plant, fungal and bacterial peroxidases, Curr. Opin. Struct. Biol. 2: 388–393.

    Article  CAS  Google Scholar 

  42. Morita, Y., Mikami, B., Yamashita, H., Lee, J. Y., Aibara, S., Sato, M., Katsube, Y., and Tanaka, N., 1991, Primary and crystal structures of horseradish peroxidase isozyme E5, in: Biochemical, Molecular and Physiological Aspects of Plant Peroxidases ( J. Lobarzewski, H. Greppin, C. Penel, and T. Gaspar, eds.), University of Geneva, Geneva, pp. 81–88.

    Google Scholar 

  43. Poulos, T. L., Finzel, B. C., Gunsalus, I. C., Wagner, G. C., and Kraut, J., 1985, The 2.6A crystal structure of Pseudomonas putida cytochrome P 450, J. Biol. Chem. 260: 16122–16130.

    PubMed  CAS  Google Scholar 

  44. Hasemann, C. A., Ravichandran, K. G., Peterson, J. A., and Diesenhofer, J., 1994, Crystal structure and refinement of cytochrome P450terp at 2.3A resolution, J. Mol. Biol. 236: 1169–1185.

    Article  PubMed  CAS  Google Scholar 

  45. Ravichandran, K. G., Boddupalli, S. S., Hasemann, C. A., Peterson, J. A., and Deisenhofer, J., 1993, Crystal structure of hemoprotein domain of P4508MS, a prototype for microsomal P450’s, Science 261: 731–736.

    Article  PubMed  CAS  Google Scholar 

  46. Hasemann, C. A., Ravichandran, K. G., Boddupalli, S. S., Peterson, J. A., and Deisenhofer, J., 1995, Structure and function of cytochromes P450: A comparative analysis of the three-dimensional structures of P450tetp, P450cam, and the hemoprotein domain of P450BM-3, Structure,in press.

    Google Scholar 

  47. Haurand, M., and Ullrich, V., 1985, Isolation and characterization of thromboxane synthase from human platelets as a cytochrome P-450 enzyme, J. Biol. Chem. 260: 15059–15067.

    PubMed  CAS  Google Scholar 

  48. Hecker, M., and Ullrich, V., 1989, On the mechanism of prostacyclin and thromboxane A2 biosynthesis, J. Biol. Chem. 264: 141–150.

    PubMed  CAS  Google Scholar 

  49. Ullrich, V., Castle, L., and Weller, P., 1981, Spectral evidence for the cytochrome P450 nature of prostacyclin synthase, Biochem. Pharmacol. 30: 2033–2036.

    Article  PubMed  CAS  Google Scholar 

  50. Song, W.-C., Funk, C. D., and Brash, A. R., 1993, Molecular cloning of an allene oxide synthase: A cytochrome P450 specialized for the metabolism of fatty acid hydroperoxides, Proc. Natl. Acad. Sci. USA 90: 8519–8523.

    Article  PubMed  CAS  Google Scholar 

  51. Pelletier, H., and Kraut, J., 1992, Crystal structure of a complex between electron transfer partners, cytochrome c peroxidase and cytochrome c, Science 258: 1748–1755.

    Article  PubMed  CAS  Google Scholar 

  52. Lambeir, A. M., Markey, C. M., Dunford, H. B., and Marnett, L. J., 1985, Spectral properties of the higher oxidation states of prostaglandin H synthase, J. Biol. Chem. 260: 14894–14896.

    PubMed  CAS  Google Scholar 

  53. Kulmacz, R. J., Tsai, A.-L., and Palmer, G., 1987, Herne spin states and peroxide-induced radical species in prostaglandin H synthase, J. Biol. Chem. 262: 10524–10531.

    PubMed  CAS  Google Scholar 

  54. Marnett, L. J., and Reed, G. A., 1979, Peroxidatic oxidation of benzo[a]pyrene and prostaglandin biosynthesis, Biochemistry 18: 2923–2929.

    Article  PubMed  CAS  Google Scholar 

  55. Ohki, S., Ogino, N., Yamamoto, S., and Hayaishi, O., 1979, Prostaglandin hydroperoxidase, an integral part of prostaglandin endoperoxide synthetase from bovine vesicular gland microsomes, J. Biol. Chem. 254: 829–836.

    PubMed  CAS  Google Scholar 

  56. Shimokawa, T., Kulmacz, R. J., DeWitt, D. L., and Smith, W. L., 1990, Tyrosine 385 of prostaglandin endoperoxide synthase is required for cyclooxygenase catalysis, J. Biol. Chem. 265: 20073–20076.

    PubMed  CAS  Google Scholar 

  57. Poulos, T. L., 1986, The crystal structure of cytochrome P-450cam, in: Cytochrome P-450: Structure, Mechanism, and Biochemistry (P. R. Ortiz de Montellano, ed.), Plenum Press, New York, pp. 505–539.

    Google Scholar 

  58. Andrews, P.C., and Krinsky, N. I., 1981, The reductive cleavage of myeloperoxidase in half, producing enzymically active hemi-myeloperoxidase, J. Biol. Chem. 256: 4211–4218.

    PubMed  CAS  Google Scholar 

  59. Moguilevsky, N., Garcia-Quintana, L., Jacquet, A., Tournay, C., Fabry, L., Pierard, L., and Bollen, A., 1991, Structure and biological properties of human recombinant myeloperoxidase produced by Chinese hamster ovary cell lines, Eur. J. Biochem. 197: 605–614.

    Article  PubMed  CAS  Google Scholar 

  60. Chance, B., 1943, The kinetics of the enzyme—substrate compound of peroxidase, J. Biol. Chem. 151: 553–577.

    CAS  Google Scholar 

  61. George, P., 1953, Intermediate compound formation with peroxidase and strong oxidizing agents, J. Biol. Chem. 201: 413–426.

    PubMed  CAS  Google Scholar 

  62. Dolphin, D., and Felton, R. H., 1974, The biochemical significance of porphyrin it cation radicals, Acc. Chem. Res. 7: 26–32.

    Article  CAS  Google Scholar 

  63. Yonetani, T., 1976, Cytochrome c peroxidase, in: The Enzymes Vol. 13 ( P. D. Boyer, ed.), Academic Press, New York, pp. 345–362.

    Google Scholar 

  64. Sivaraja, M., Goodin, D. B., Smith, M., and Hoffman, B. M., 1989, Identification by ENDOR ofTrpt9h as the free-radical site in cytochrome c peroxidase compound ES, Science 245: 738–740.

    Article  PubMed  CAS  Google Scholar 

  65. Houseman, A. L. P., Doan, P. E., Goodin, D. B., and Hoffman, B. M., 1993, Comprehensive explanation of the anomalous EPR spectra of wild-type and mutant cytochrome c peroxidase compound ES, Biochemistry 32: 4430–4443.

    Article  PubMed  CAS  Google Scholar 

  66. Karthein, R., Dietz, R., Nastainczyk, W., and Ruf, H. H., 1988, Higher oxidation states of prostaglandin H synthase. EPR study of a transient tyrosyl radical in the enzyme during the peroxidase reaction, Eur. J. Biochem. 171: 313–320.

    Article  PubMed  CAS  Google Scholar 

  67. Tsai, A.-L., Hsi, L. C., Kulmacz, R. J., Palmer, G., and Smith, W. L., 1994, Characterization of the tyrosyl radicals in ovine prostaglandin H synthase-1 by isotope replacement and site-directed mutagenesis, J. Biol. Chem. 269: 5085–5091.

    PubMed  CAS  Google Scholar 

  68. Lassmann, G., Odenwaller, R., Curtis, J. F., DeGray, J. A., Mason, R. P., Marnett, L. J., and Eling, T. E., 1991, Electron spin resonance investigation of tyrosyl radicals of prostaglandin H synthase. Relation to enzyme catalysis, J. Biol. Chem. 266: 20045–20055.

    PubMed  CAS  Google Scholar 

  69. Tsai, A.-L., Palmer, G., and Kulmacz, R. J., 1992, Prostaglandin H synthase. Kinetics of tyrosyl radical formation and of cyclooxygenase catalysis, J. Biol. Chem. 267: 17753–17759.

    PubMed  CAS  Google Scholar 

  70. DeGray, J. A., Lassmann, G., Curtis, J. F., Kennedy, T. A., Marnett, L. J., Eling, T. E., and Mason, R. P., 1992, Spectral analysis of the protein-derived tyrosyl radicals from prostaglandin H synthase, J. Biol. Chem. 267: 23583–23588.

    PubMed  CAS  Google Scholar 

  71. Kulmacz, R. J., Ren, Y., Tsai, A.-L., and Palmer, G., 1990, Prostaglandin H synthase: Spectroscopic studies of the interaction with hydroperoxides and with indomethacin, Biochemistry 29: 8760–8771.

    Article  PubMed  CAS  Google Scholar 

  72. Harris, R. Z., Newmyer, S. L., and Ortiz de Montellano, P. R., 1993, Horseradish peroxidase-catalyzed two-electron oxidations. Oxidation of iodide, thioanisoles, and phenols at distinct sites, J. Biol. Chem. 268: 1637–1645.

    PubMed  CAS  Google Scholar 

  73. Thomas, E. L., and Learn, D. B., 1991, Myeloperoxidase-catalyzed oxidation of chloride and other halides: The role of chloramines, in: Peroxidases in Chemistry and Biology (J. Everse, K. E. Everse, and M. B. Grisham, eds.), CRC Press, Boca Raton, FL, Vol. 1, pp. 83–103.

    Google Scholar 

  74. Bruice, T. C., 1991, Reactions of hydroperoxides with metallotetraphenylporphyrins in aqueous solutions, Acc. Chem. Res. 24: 243–249.

    Article  CAS  Google Scholar 

  75. Ostovic, D., and Bruice, T. C., 1992, Mechanism of alkene epoxidation by iron, chromium, and manganese higher valent oxo-metalloporphyrins, Acc. Chem. Res. 25: 314–320.

    Article  CAS  Google Scholar 

  76. Traylor, T. G., and Xu, F., 1988, Model reactions related to cytochrome P-450. Effects of alkene structure on the rates of epoxide formation, J. Am. Chem. Soc. 110: 1953–1958.

    Article  CAS  Google Scholar 

  77. Traylor, T. G., and Xu, F., 1990, Mechanisms of reactions of iron(III)porphyrins with hydrogen peroxide and hydroperoxides: Solvent and solvent isotope effects, J. Am. Chem. Soc. 112: 178–186.

    Article  CAS  Google Scholar 

  78. Traylor, T. G., Lee, W. A., and Stynes, D. V., 1984, Model compound studies related to peroxidases. Mechanisms of reactions of hemins with peracids, J. Am. Chem. Soc. 106: 755–764.

    Article  CAS  Google Scholar 

  79. Traylor, T. G., Tsuchiya, S., Byun, Y.-S., and Kim, C., 1993, High-yield epoxidations with hydrogen peroxide and tert-butyl hydroperoxide catalyzed by iron(III) porphyrins: Heterolytic cleavage of hydroperoxides, J. Am. Chem. Soc. 115: 2775–2781.

    Article  CAS  Google Scholar 

  80. Labeque, R., and Marnett, L. J., 1989, Homolytic and heterolytic scission of organic hydroperoxides by meso-tetraphenylporphinato-iron(III) and its relation to olefin epoxidation, J. Am. Chem. Soc. 111: 6621–6627.

    Article  CAS  Google Scholar 

  81. Marnett, L. J., Chen, Y.-N. P., Maddipati, K. R., Ple, P., and Labeque, R., 1988, Functional differentiation of cyclooxygenase and peroxidase activities of prostaglandin synthase by trypsin treatment: Possible location of a prosthetic heme binding site, J. Biol. Chem. 263: 16532–16535.

    PubMed  CAS  Google Scholar 

  82. George, P., and Irvine, D.H., 1954, Reaction of metmyoglobin with strong oxidizing agents, Biochem. J. 58: 188–195.

    PubMed  CAS  Google Scholar 

  83. McCarthy, M. B., and White, R. E., 1983, Functional differences between peroxidase compound I and the cytochrome P-450 reactive oxygen intermediate, J. Biol. Chem. 258: 9153–9158.

    PubMed  CAS  Google Scholar 

  84. George, P., and Irvine, D. H., 1955, A possible structure for the higher oxidation state of metmyoglobin, Biochem. J. 60: 596–604.

    PubMed  CAS  Google Scholar 

  85. Catalano, C. E., Choe, Y. S., and Ortiz de Montellano, P. R., 1989, Reactions of the protein radical in peroxide-treated myoglobin. Formation of a heure-protein cross-link, J. Biol. Chem. 264: 10534–10541.

    PubMed  CAS  Google Scholar 

  86. Wilks, A., and Ortiz de Montellano, P. R., 1992, Intramolecular translocation of the protein radical formed in the reaction of recombinant sperm whale myoglobin with H202, J. Biol. Chem. 267: 8827–8833.

    PubMed  CAS  Google Scholar 

  87. Rao, S. I., Wilks, A., and Ortiz de Montellano, P. R., 1993, The roles of His-64, Tyr-103, Tyr-146, and Tyr-151 in the epoxidation of styrene and 13-methylstyrene by recombinant sperm whale myoglobin, J. Biol. Chem. 268: 803–809.

    PubMed  CAS  Google Scholar 

  88. Allentoff, A. J., Bolton, J. L., Wilks, A., Thompson, J. A., and Ortiz de Montellano, P. R., 1992, Heterolytic versus homolytic peroxide bond cleavage by sperm whale myoglobin and myoglobin mutants, J. Am. Chem. Soc. 114: 9744–9749.

    Article  CAS  Google Scholar 

  89. Weiss, R. H., and Estabrook, R. W., 1986, The mechanism of cumene hydroperoxide-dependent lipid peroxidation: The function of cytochrome P-450, Arch. Biochem. Biophys. 251: 348–360.

    Article  PubMed  CAS  Google Scholar 

  90. Weiss, R. H., and Estabrook, R. W., 1986, The mechanism of cumene hydroperoxide-dependent lipid peroxidation: The significance of oxygen uptake, Arch. Biochem. Biophys. 251: 336–347.

    Article  PubMed  CAS  Google Scholar 

  91. Vaz, A. D. N., and Coon, M. J., 1987, Hydrocarbon formation in the reductive cleavage of hydroperoxides by cytochrome P-450, Proc. Natl. Acad. Sci. USA 84: 1172–1176.

    Article  PubMed  CAS  Google Scholar 

  92. Vaz, A. D. N., Roberts, E. S., and Coon, M. J., 1990, Reductive 13-scission of the hydroperoxides of fatty acids and xenobiotics: Role of alcohol-inducible cytochrome P-450, Proc. Natl. Acad. Sci. USA 87: 5499–5503.

    Article  PubMed  CAS  Google Scholar 

  93. Song, W.-C., Baertschi, S. W., Boeglin, W. E., Harris, T. M., and Brash, A. R., 1993, Formation of epoxyalcohols by a purified allene oxide synthase. Implications for the mechanism of allene oxide synthesis, J. Biol. Chem. 268: 6293–6298.

    PubMed  CAS  Google Scholar 

  94. Adachi, S., Nagano, S., Ishimori, K., Watanabe, Y., Morishima, I., Egawa, T., Kitagawa, T., and Makino, R., 1993, Roles of proximal ligand in heure proteins: Replacement of proximal histidine of human myoglobin with cysteine and tyrosine by site-directed mutagenesis as models for P-450, chloroperoxidase, and catalase, Biochemistry 32: 241–252.

    Article  PubMed  CAS  Google Scholar 

  95. Wang, J. M., Mauro, M., Edwards, S. L., Oatley, S. J., Fishel, L. A., Ashford, V. A., Xuong, N. H., and Kraut, J., 1990, X-ray structures of recombinant yeast cytochrome c peroxidase and three heme-cleft mutants prepared by site-directed mutagenesis, Biochemistry 29: 7160–7173.

    Article  PubMed  CAS  Google Scholar 

  96. Goodin, D. B., and McRee, D. E., 1993, The Asp-His-Fe triad of cytochrome c peroxidase controls the reduction potential, electronic structure, and coupling of the tryptophan free radical to the heme, Biochemistry 32: 3313–3324.

    Article  PubMed  CAS  Google Scholar 

  97. Vitello, L. B., Erman, J. E., Miller, M. A., Mauro, J. M., and Kraut, J., 1992, Effect of Asp-235-Asn substitution on the absorption spectrum and hydrogen peroxide reactivity of cytochrome c peroxidase, Biochemistry 31: 11524–11535.

    Article  PubMed  CAS  Google Scholar 

  98. Sundaramoorthy, M., Choudhury, K., Edwards, S. L., and Poulos, T. L., 1991, Crystal structure and preliminary functional analysis of the cytochrome c peroxidase His175Gln proximal ligand mutant, J. Am. Chem. Soc. 113: 7755–7757.

    Article  CAS  Google Scholar 

  99. Choudhury, K., Sundaramoorthy, M., Mauro, J. M., and Poulos, T. L., 1992, Conversion of the proximal histidine ligand to glutamine restores activity to an inactive mutant of cytochrome c peroxidase, J. Biol. Chem. 267: 25656–25659.

    PubMed  CAS  Google Scholar 

  100. Poulos, T. J., and Kraut, J., 1980, The stereochemistry of peroxidase catalysis, J. Biol. Chem. 255: 8199–8205.

    PubMed  CAS  Google Scholar 

  101. Erman, J. E., Vitello, L. B., Miller, M. A., Shaw, A., Brown, K. A., and Kraut, J., 1993, Histidine 52 is a critical residue for rapid formation of cytochrome c peroxidase compound I, Biochemistry 32: 9798–9806.

    Article  PubMed  CAS  Google Scholar 

  102. Dalziel, K., and O’Brien, J. R. P., 1954, Spectrophotometric studies of the reaction of methaemoglobin with hydrogen peroxide, 1. The formation of methaemoglobin-hydrogen peroxide, Biochem. J. 56: 648–659.

    PubMed  CAS  Google Scholar 

  103. George, P., and Irvine, D. H., 1956, A kinetic study of the reaction between ferrimyoglobin and hydrogen peroxide, J. Colloid Sci. 11: 329–339.

    Article  Google Scholar 

  104. Yonetani, T., and Schleyer, H., 1967, Studies on cytochrome c peroxidase. IX. The reaction of ferrimyoglobin with hydroperoxides and a comparison of peroxide-induced compounds of ferrimyoglobin and cytochrome c peroxidase, J. Biol. Chem. 242: 1974–1979.

    PubMed  CAS  Google Scholar 

  105. Fox, J. B., Jr., Nicholas, R. A., Ackerman, S. A., and Swift, C. E., 1974, A multiple wavelength analysis of the reaction between hydrogen peroxide and metmyoglobin, Biochemistry 13: 5178–5186.

    Article  PubMed  CAS  Google Scholar 

  106. Roe, J. A., and Goodin, D. B., 1993, Enhanced oxidation of aniline derivatives by two mutants of cytochrome c peroxidase at tryptophan 51, J. Biol. Chem. 268: 20037–20045.

    PubMed  CAS  Google Scholar 

  107. Smith, A. T., Sanders, S. A., Greschik, H., Thorneley, R. N. F., Burke, J. F., and Bray, R. C., 1992, Probing the mechanism of horseradish peroxidase by site-directed mutagenesis, Biochem. Soc. Trans. 20: 340–345.

    CAS  Google Scholar 

  108. Job, D., and Dunford, H. B., 1976, Substituent effect on the oxidation of phenols and aromatic amines by horseradish peroxidase compound I, Eur. J. Biochem. 66: 607–614.

    Article  PubMed  CAS  Google Scholar 

  109. DePillis, G. D., Sishta, B. P., Mauk, A. G., and Ortiz de Montellano, P. R., 1991, Small substrates and cytochrome c are oxidized at different sites of cytochrome c peroxidase, J. Biol. Chem. 266: 19334–19341.

    PubMed  CAS  Google Scholar 

  110. Ortiz de Montellano, P.R., 1992, Catalytic sites of hemoprotein peroxidases, Annu. Rev. Pharmacol. Toxicol. 32: 89–107.

    Article  Google Scholar 

  111. Raag, R., Swanson, B. A., Poulos, T. L., and Ortiz de Montellano, P. R., 1990, Formation, crystal structure, and rearrangement of a cytochrome P-450cam iron-phenyl complex, Biochemistry 29: 8119–8126.

    Article  PubMed  CAS  Google Scholar 

  112. Swanson, B. A., Dutton, D. R., Lunetta, J. M., Yang, C. S., and Ortiz de Montellano, P. R., 1991, The active sites of cytochromes P450 IA 1, IIBI, IIB2, and IIEI. Topological analysis by in situ rearrangement of phenyl-iron complexes, J. Biol. Chem. 266: 19258–19264.

    PubMed  CAS  Google Scholar 

  113. Ortiz de Montellano, P. R., 1987, Control of the catalytic activity of prosthetic heme by the structure of hemoproteins, Acc. Chem. Res. 20: 289–294.

    Article  Google Scholar 

  114. Sakurada, J., Takahashi, S., and Hosoya, T., 1986, Nuclear magnetic resonance studies on the spatial relationship of aromatic donor molecules to the heme iron of horseradish peroxidase, J. Biol. Chem. 261: 9657–9662.

    PubMed  CAS  Google Scholar 

  115. Modi, S., Behere, D. V., and Mitra, S., 1989, Interaction of thiocyanate with horseradish peroxidase. tH and 15N nuclear magnetic resonance studies, J. Biol. Chem. 264: 19677–19684.

    PubMed  CAS  Google Scholar 

  116. Goodin, D. B., Davidson, M. G., Roe, J. A., Mauk, A. G., and Smith, M., 1991, Amino acid substitutions at tryptophan-51 of cytochrome c peroxidase: Effects on coordination, species preference for cytochrome c, and electron transfer, Biochemistry 30: 4953–4962.

    Article  PubMed  CAS  Google Scholar 

  117. Miller, V. P., DePillis, G. D., Ferrer, J. C., Mauk, A. G., and Ortiz de Montellano, R R., 1992, Monooxygenase activity of cytochrome c peroxidase, J. Bio!. Chem. 267: 8936–8942.

    CAS  Google Scholar 

  118. Smith, A. T., Sanders, S. A., Thorneley, R.N. E, Burke, J. E, and Bray, R. R. C., 1992, Characterisation of a haem active-site mutant of horseradish peroxidase, Phe41-Val, with altered reactivity towards hydrogen peroxide and reducing substrates, Eur. J. Biochem. 207: 507–519.

    Article  PubMed  CAS  Google Scholar 

  119. MacDonald, T. L., Gutheim, W. G., Martin, R. B., and Guengerich, E R, 1989, Oxidation of substituted N,N-dimethylanilines by cytochrome P-450: Estimation of the effective oxidation potential of cytochrome P-450, Biochemistry 28: 2071–2077.

    Article  PubMed  CAS  Google Scholar 

  120. Hayashi, Y., and Yamazaki, I., 1979, The oxidation-reduction potentials of compound I/II and II/ferric couples of horseradish peroxidases Az and C, J. Bio!. Chem. 254: 9101–9106.

    CAS  Google Scholar 

  121. Fee, J. A., and Valentine, J. S., 1977, Chemical and physical properties of superoxide, in: Superoxide and Superoxide Dismutases ( A. M. Michelson, J. M. McCord, and I. Fridovich, eds.), Academic Press, New York, pp. 19–60.

    Google Scholar 

  122. Kobayashi, S., Nakano, M., Kimura, T., and Schaap, P.A., 1987, On the mechanism of the peroxidase catalyzed oxygen transfer reaction, Biochemistry 26: 5019–5022.

    Article  PubMed  CAS  Google Scholar 

  123. Egan, R. W., Gale, R H., Vandenheuvel, W. J., Baptista, E. M., and Kuehl, F. A., 1980, Mechanism of oxygen transfer by prostaglandin hydroperoxidase, J. Biol. Chem. 255: 323–326.

    PubMed  CAS  Google Scholar 

  124. Doerge, D. R., and Corbett, M. D., 1991, Peroxygenation mechanism of chloroperoxidase-catalyzed N-oxidation of arylamines, Chem. Res. Toxicol. 4: 556–560.

    Article  PubMed  CAS  Google Scholar 

  125. Hughes, M. F., Smith, B. J., and Eling, T. E., 1992, The oxidation of 4-aminobiphenyl by horseradish peroxidase, Chem. Res. Toxicol. 5: 340–345.

    Article  PubMed  CAS  Google Scholar 

  126. Ple, R, and Marnett, L. J.,1989, Alkylaryl sulfides as peroxidase reducing substrates for prostaglandin H synthase: Probes for the reactivity and environment of the ferryl-oxo complex, J. Biol. Chem. 264: 13983–13993.

    Google Scholar 

  127. Watanabe, Y., Iyanagi, T., and Oae, S., 1980, Kinetic study on enzymatic S-oxygenation promoted by a reconstituted system with purified cytochrome P-450, Tetrahedron Lett. 21: 3685–3688.

    Article  CAS  Google Scholar 

  128. Perez, U., and Dunford, H. B., 1990, Transient-state kinetics of the reactions of 1-methoxy-4(methylthio)benzene with horesradish peroxidase compounds I and II, Biochemistry 29: 2757–2763.

    Article  PubMed  CAS  Google Scholar 

  129. Casella, L., Gullotti, M., Ghezzi, R., Poli, S., Beringhelli, T., Colonna, S., and Carrea, G., 1992, Mechanism of enantioselective oxygenation of sulfides catalyzed by chloroperoxidase and horseradish peroxidase. Spectral studies and characterization of enzyme-substrate complexes, Biochemistry 31: 9451–9459.

    Article  PubMed  CAS  Google Scholar 

  130. Doerge, D. R., Cooray, N. M., and Brewster, M. E., 1991, Peroxidase-catalyzed S-oxygenation: Mechanism of oxygen transfer for lactoperoxidase, Biochemistry 30: 8960–8964.

    Article  PubMed  CAS  Google Scholar 

  131. Ozaki, S.-I., and Ortiz de Montellano, R R., 1994, Molecular engineering of horseradish peroxidase. Highly enantioselective sulfoxidation of aryl alkyl sulfides by the Phe-41— Leu mutant, J. Am. Chem. Soc. 116: 4487–4488.

    Article  CAS  Google Scholar 

  132. Blee, E., and Schuber, F., 1989, Mechanism of S-oxidation reactions catalyzed by a soybean hydroperoxide-dependent oxygenase, Biochemistry 28: 4962–4967.

    Article  CAS  Google Scholar 

  133. Blee, E., and Schuber, F., 1990, Efficient epoxidation of unsaturated fatty acids by a hydroperoxidedependent oxygenase, J. Biol. Chem. 265: 12887–12894.

    PubMed  CAS  Google Scholar 

  134. Blee, E., Wilcox, A. L., Marnett, L. J., and Schuber, F., 1993, Mechanism of reaction of fatty acid hydroperoxides with soybean peroxygenase, J. Biol. Chem. 268: 1708–1715.

    PubMed  CAS  Google Scholar 

  135. Hewson, W. D., and Hager, L. R, 1979, Peroxidases, catalases, and chloroperoxidase, in: The Porphyrins. Part B, Vol. 7 ( D. Dolphin, ed.), Academic Press, New York.

    Google Scholar 

  136. Griffin, B. W., 1991, Chloroperoxidase: Areview, in: Peroxidases in Chemistry and Biology ( J. Everse, K. E. Everse, and M. B. Grisham, eds.), CRC Press, Boca Raton, FL, pp. 85–137.

    Google Scholar 

  137. Samokyszyn, V. M., and Ortiz de Montellano, R R., 1991, Topology of the chloroperoxidase active site: Regiospecificity of heme modification by phenylhydrazine and sodium azide, Biochemistry 30: 11646–11653.

    Article  PubMed  CAS  Google Scholar 

  138. Vane, J., and Botting, R., 1988, Inflammation and the mechanism of action of anti-inflammatory drugs, FASEB J. 2: 89–96.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Marnett, L.J., Kennedy, T.A. (1995). Comparison of the Peroxidase Activity of Hemoproteins and Cytochrome P450. In: de Montellano, P.R.O. (eds) Cytochrome P450. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-2391-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2391-5_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3248-8

  • Online ISBN: 978-1-4757-2391-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics