Skip to main content

Genetics of Temperate Bacteriophages

  • Chapter
Bacterial and Bacteriophage Genetics

Abstract

For all bacteriophages discussed in the preceding chapters, a successful phage infection always results in the immediate production of progeny virions. However, many bacteriophages are known for which there is an alternative outcome to phage infection. Instead of the customary unrestrained DNA replication and phage assembly, there is a temperate response in which a bacteriophage sets up housekeeping within a bacterial cell and maintains a stable relationship with that cell and all its progeny for many generations. The varied ways in which the temperate response can be accomplished are the subject of this chapter. The population dynamics of temperate and lytic viruses and their hosts have been analyzed by Stewart and Levin and are not covered here. The physical properties of the temperate bacteriophages discussed in this chapter are summarized in Table 8–1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

General

  • Botstein, D. (1980). A theory of modular evolution for bacteriophages. Annals of the New York Academy of Sciences 354:484–491.

    Article  PubMed  CAS  Google Scholar 

  • Das, A. (1992). How the phage lambda N gene product suppresses transcription termination: Communication of RNA polymerase with regulatory proteins mediated by signals in nascent RNA. Journal of Bacteriology 174:6711–6716.

    PubMed  CAS  Google Scholar 

  • Friedman, D.I. (1988). Regulation of phage gene expression by termination and antitermination of transcription, pp. 263–319. In: Calendar, R. (ed.), The Bacteriophages, vol. 2. New York: Plenum Press. (A discussion of the lambdoid phages P2, P4, and 186.)

    Chapter  Google Scholar 

  • Hendrix, R.W., Duda, R.L. (1992). Bacteriophage λPaPa Not the mother of all X phages. Science 258:1145–1148.

    Article  PubMed  CAS  Google Scholar 

  • Lindqvist, B.H., Dehò, G., Calendar, R. (1993). Mechanisms of genome propagation and helper exploitation by satellite phage P4. Microbiological Reviews 57:683–702.

    PubMed  CAS  Google Scholar 

  • Symonds, N., Toussaint, A., van de Putte, P., Howe, M.M. (eds.) (1987). Phage Mu. Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory.

    Google Scholar 

Specialized

  • Atkinson, B.L., Gottesman, M.E. (1992). The Escherichia coli rpoB60 mutation blocks antitermination by coliphage HK022 Q-function. Journal of Molecular Biology 227:29–37.

    Article  PubMed  CAS  Google Scholar 

  • Casjens, S., Sampson, L., Randall, S. (1992). Molecular genetic analysis of bacteriophage P22 gene 3 product, a protein involved in the initiation of headful DNA packaging. Journal of Molecular Biology 227:1086–1099.

    Article  PubMed  CAS  Google Scholar 

  • Dehò, G., Zangrossi, S., Sabbattini, P., Sironi, G., Ghisotti, D., (1992). Bacteriophage P4 immunity controlled by small RNAs via transcription termination. Molecular Microbiology 6:3415–3425.

    Article  PubMed  Google Scholar 

  • Geuskens, V., Mhammedi-Alaoui, A., Desmet, L., Toussaint, A. (1992). Virulence in bacteriophage Mu: A case of trans-dominant proteolysis by the Escherichia coli Clp serine protease. EMBO Journal 11:5121–5127. (An explanation of how a virulent mutant phage can destabilize an existing prophage.)

    PubMed  CAS  Google Scholar 

  • Shean, C.S., Gottesman, M.E. (1992). Translation of the prophge &3x03BB; c I transcript. Cell 70:513–522. (A demonstration of the role of a downstream box in regulating translation efficiency.)

    Article  PubMed  CAS  Google Scholar 

  • Sletten, A., Gebhardt, K., Kristiansen, E., Birkeland, N.-K., Lindqvist, B.H. (1992). Escherichia coli K-12 and B contain functional bacteriophage P2 ogr genes. Journal of Bacteriology 174:4094–4100. (There are cryptic P2 prophages in both strains tested.)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Birge, E.A. (1994). Genetics of Temperate Bacteriophages. In: Bacterial and Bacteriophage Genetics. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-2328-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2328-1_8

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-2330-4

  • Online ISBN: 978-1-4757-2328-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics