Skip to main content

Pharmacological Properties of Metabotropic Glutamate Receptors

  • Chapter

Part of the book series: The Receptors ((REC))

Abstract

Metabotropic glutamate receptors (mGluRs) were initially discovered by their unique coupling mechanism and pharmacological characteristics. This was preceded by the recognition in the early 1980s of phosphoinositide hydrolysis as a novel signal transduction pathway in the mammalian central nervous system (CNS) (Berridge and Irvine, 1984; Nishizuka, 1984). Pharmacological studies of receptor-mediated phosphoinositide hydrolysis in CNS tissues were greatly facilitated by use of lithium ion to amplify agonist-dependent responses. Lithium at concentrations of 1–10 mM uncompetitively inhibits the enzyme inositol-1-monophosphatase (Hallcher and Sherman, 1980). Using 3H-myo-inositol to label 3H-phosphoinositides and lithium to inhibit inositol-l-monophosphatase, Berridge et al. (1982) demonstrated in rat cerebral cortical slices that cholinergic and adrenergic receptor agonists will increase phosphoinositide hydrolysis and, thus, produce an easily measured increase in the formation of 3H-inositol-1-monophosphate. The use of this sensitive technique allowed other investigators to begin characterizing the various receptor systems that were linked to this novel second-messenger system in the CNS (see Fisher and Agranoff, 1987).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe, T., Sugihara, H. Nawa, H., Shigemoto, R., Mizuno, N., and Nakanishi, S. (1992) Molecular characterization of a novel metabotropic glutamate receptor mGluR5 coupled to inositol phosphate/Ca2+signal transduction. J. Biol. Chem. 267 13,361–13,368.

    Google Scholar 

  • Ahmed, Z., Lewis, C. A., and Faber, D. S. (1990) Glutamate stimulates release of Ca’ from internal stores in astroglia. Brain Res. 516, 165–169.

    Article  PubMed  CAS  Google Scholar 

  • Anwyl, R. (1991) The role of the metabotropic receptor in synaptic plasticity. Trends Pharmacol. Sci. 12, 324–326.

    Article  PubMed  CAS  Google Scholar 

  • Aramori, I. and Nakanishi, S. (1992) Signal transduction and pharmacological characteristics of a metabotropic glutamate receptor, mGluR 1, in transfected CHO cell. Neuron 8, 757–765.

    Article  PubMed  CAS  Google Scholar 

  • Aronica, E., Nicoletti, F., Condorelli, D. F., and Balazs, R. (1993) Pharmacological characteristics of metabotropic glutamate receptors in cultured cerebellar granule cells. Neurochem. Res. 18, 605–612.

    Article  PubMed  CAS  Google Scholar 

  • Bardsley, M. E. and Roberts, P. J. (1983) Stimulation of phosphatidylinositol turnover in rat brain by glutamate and aspartate. Br. J. Pharmacol. 79, 401 P.

    Article  Google Scholar 

  • Bashir, Z. I., Bortolotto, Z. A., Davies, C. H., Berretta, N., Irving, A. J., Seal, A. J., Henley, J. M., Jane, D. E., Watkins, J. C., and Collingridge, G. L. (1993) Induction of LTP in the hippocampus needs synaptic activation of glutamate metabotropic receptors. Nature 363, 347–350.

    Google Scholar 

  • Berridge, M. J. and Irvine, R. F. (1984) Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature 312, 315–321.

    Article  PubMed  CAS  Google Scholar 

  • Berridge, M. J., Downes, C. P., and Hanley, M. R. (1982) Lithium amplifies agonistdependent phosphatidylinositol responses in brain and salivary glands. Biochem. J. 206, 587–595.

    Google Scholar 

  • Birse, E. F., Eaton, S. A., Jane, D. E., Jones P. L. St. J., Porter, R. H. P., Pook, P. C.-K., Sunter, D. C., Udvarhelyi, P. M., Wharton, B., Roberts, P. J., Salt, T. E., and Watkins, J. C. (1993) Phenylglycine derivatives as new pharmacological tools for investigating the role of metabotropic glutamate receptors in the central nervous system. Neuroscience 52, 481–488.

    Google Scholar 

  • Boss, V. and Conn, P. J. (1992) Metabotropic excitatory amino acid receptor activation stimulates phospholipase D in hippocampal slices. J. Neurochem. 59, 2340–2343.

    Article  PubMed  CAS  Google Scholar 

  • Boss, V. and Conn, P. J. (1993) L-Cysteine sulfinic acid (L-CSA): an endogenous agonist of a metabotropic excitatory amino acid receptor subtype. Abstr. Soc. Neurosci. 19, 626.

    Google Scholar 

  • Boss, V., Desai, M. A., Smith, T. S., and Conn, P. J. (1992) Trans-ACPD-induced phosphoinositide hydrolysis and modulation of hippocampal pyramidal cell excitability do not undergo parallel developmental regulation. Brain Res. 594, 181–188.

    Article  PubMed  CAS  Google Scholar 

  • Cartmell, J., Kemp, J. A., Alexander, S. P. H., Hill, S. J., and Kendall, D. A. (1992) Inhibition of forskolin-stimulated cyclic AMP formation by 1-aminocyclopentanetrans-1,3-dicarboxylate in guinea-pig cerebral cortical slices. J. Neurochem. 58, 1964–1966.

    Article  PubMed  CAS  Google Scholar 

  • Cartmell, J., Curtis, A. R., Kemp, J. A., Kendall, D. A., and Alexander, S. P. H. (1993) Subtypes of metabotropic excitatory amino acid receptor distinguished by stereoisomers of the rigid glutamate analogue, 1-aminocyclopentane-1,3-dicarboxylic acid. Neurosci. Lett. 153, 107–110.

    Article  PubMed  CAS  Google Scholar 

  • Casabona, G., Genazzani, A. A., Di Stefano, M., Sortino, M. A., and Nicoletti, F. (1992) Developmental changes in the modulation of cyclic AMP formation by the metabotropic glutamate receptor agonist 1S,3R-aminocyclopentane-1,3-dicarboxylic acid in brain slices. J. Neurochem. 59, 1161–1163.

    Article  PubMed  CAS  Google Scholar 

  • Catania, M. V., Hollingsworth, Z., Penney, J. B., and Young, A. B. (1993) Quisqualate resolves two distinct metabotropic [3H]glutamate binding sites. NeuroReport 4, 311–313.

    Article  PubMed  CAS  Google Scholar 

  • Chung, D. S., Winder, D. G., and Conn, P. J. (1993) 4-Bromohomoibotenic acid selectively activates an ACPD-insensitive metabotropic glutamate receptor coupled to phosphoinositide hydrolysis in rat cortical slices. J. Neurochem. in press.

    Google Scholar 

  • Copani, A., Canonico, P. L., and Nicoletti, F. (1990) ß-N-Methylamino-L-alanine (L-BMAA) is a potent agonist of “metabolotropic” glutamate receptors. Eur. J. Pharmacol. 181, 327–328.

    Article  PubMed  CAS  Google Scholar 

  • Copani, A., Canonico, P. L., Catania, M. V., Aronica, E., Bruno, V., Ratti, E., van Amsterdam, F. T. M., Gaviraghi, G., and Nicoletti, F. (1991) Interaction between ß-N-methylamino-L-alanine and excitatory amino acid receptors in brain slices and neuronal cultures. Brain Res. 558, 79–86.

    Google Scholar 

  • Desai, M. A. and Conn, P. J. (1990) Selective activation of phosphoinositide hydrolysis by a rigid analogue of glutamate. Neurosci. Lett. 109, 157–162.

    Article  PubMed  CAS  Google Scholar 

  • Desai, M. A., Smith, T. S., and Conn, P. J. (1992) Multiple metabotropic glutamate receptors regulate hippocampal function. Synapse 12, 206–213.

    Article  PubMed  CAS  Google Scholar 

  • Eaton, S. A., Jane, D. E., Jones, P. L. St. J., Porter, R. H. P., Pook, P. C.-K., Sunter, D. C., Udvarhelyi, P. M., Roberts, P. J., Salt, T. E., and Watkins, J. C. (1993) Competitive antagonism at metabotropic glutamate receptors by (S)-4-carboxyphenylglycine and (RS)-a-methyl-4-carboxyphenylglycine. Eur. J. Pharmacol. 244, 195–197.

    Article  PubMed  CAS  Google Scholar 

  • Fisher, S. K. and Agranoff, B. W. (1987) Receptor activation and inositol lipid hydrolysis in neural tissues. J. Neurochem. 48, 999–1017.

    Article  PubMed  CAS  Google Scholar 

  • Ganong, A. H. and Cotman, C. W. (1982) Acidic amino acid antagonists of lateral perforant path synaptic transmission: agonist-antagonist interactions in the dentate gyrus. Neurosci. Lett. 34, 195–200.

    Article  PubMed  CAS  Google Scholar 

  • Gerber, U., Sim J. A., and Gahwiler, B. H. (1992) Reduction of potassium conductances mediated by metabotropic glutamate receptors in rat CA3 pyramidal cells does not require protein kinase C or protein kinase A. Eur. J. Neurosci. 4, 792–797.

    Article  PubMed  Google Scholar 

  • Hallcher, L. M. and Sherman, W. R. (1980) The effects of lithium ions and other agents on the activity of myo-inositol-1-phosphatase from bovine brain. J. Biol. Chem. 255, 10,896–10, 901.

    Google Scholar 

  • Hayashi, Y., Tanabe, Y., Aramon, I., Masu, M., Shimamoto, K., Ohfune, Y., and Nakanishi, S. (1992) Agonist analysis of 2-(carboxycyclopropyl)glycine isomers for cloned metabotropic glutamate receptor subtypes expressed in Chinese hamster ovary cells. Br. J. Pharmacol. 107, 539–543.

    Google Scholar 

  • Holler, T., Cappel, E., Klein, J., and Löffelholz, K. (1993) Glutamate activates phospholipase D in hippocampal slices of newborn and adult rats. J. Neurochem. 61, 1569–1572.

    Article  PubMed  CAS  Google Scholar 

  • Holzwarth, J. A., Gibbons, S. J., Brorson, J. R., Philipson, L. H., and Miller, R. J. (1993) Glutamate receptor agonists stimulate diverse calcium responses in different types of cultured rat cortical glial cells. J. Neurosci. in press.

    Google Scholar 

  • Honore, T., Davies, S. N., Drejer, J., Fletcher, E. J., Jacobsen, P., Lodge, D., and Nielsen, F. E. (1988) Quinoxalinediones: potent competitive non-NMDA glutamate receptor antagonists. Science 241, 701–703.

    Article  PubMed  CAS  Google Scholar 

  • Houamed, K. M., Kuijper, J. L., Gilbert, T. L., Haldeman, B. A., O’Hara, P. J., Mulvihill, E. R., Almers, W., and Hagen, F. S. (1991) Cloning, expression, and gene structure of a G protein-coupled glutamate receptor from the rat brain. Science 252, 1318–1321.

    Google Scholar 

  • Irving, A. J., Collingridge, G. L., and Schofield, J. G. (1992) Interactions between Ca“ mobilizing mechanisms in cultured rat cerebellar granule cells. J. Physiol. 456, 667–680.

    PubMed  CAS  Google Scholar 

  • Irving, A. J., Schofield, J. G., Watkins, J. C., Sunter, D. C., and Collingridge, G. L. (1990)1 S,3R-ACPD stimulates and L-AP3 blocks Ca’ mobilization in rat cerebellar neurons. Eur. J. Pharmacol. 186, 363–365.

    Google Scholar 

  • Ishida, M., Akagi, H., Shimamoto, K., Ohfune, Y., and Shinozaki, H. (1990) A potent metabotropic glutamate receptor agonist: electrophysiological actions of a conformationally restricted glutamate analogue in the rat spinal cord and Xenopus oocytes. Brain Res. 537, 311–314.

    Article  PubMed  CAS  Google Scholar 

  • Ishida, M., Saitoh, T., Shimamoto, K., Ohfune, Y., and Shinozaki, H. (1993) A novel metabotropic glutamate receptor agonist: marked depression of mono-synaptic excitation in the newborn rat isolated spinal cord. Br. J. Pharmacol. 109, 1169–1177.

    Article  PubMed  CAS  Google Scholar 

  • Ito, I. Kohda, A., Tanabe, S., Hirose, E., Hayashi, M., Mitsunaga, S., and Sugiyama, H. (1992) 3,5-Dihydroxyphenyl-glycine: A potent agonist of metabotropic glutamate receptors. NeuroReport 3 1013–1016.

    Google Scholar 

  • Jane, D. E., Jones, P. L. St. J., Pook, P. C.-K., Salt, T. E., Sunter, D. C., and Watkins, J. C. (1993) Stereospecific antagonism by (+)-a-methyl-4-carboxcyphenylglycine (MCPG) of (1S,3R)-ACPD-induced effects in neonatal rat motoneurones and rat thalamic neurones. Neuropharmacology 32, 725–727.

    Article  PubMed  CAS  Google Scholar 

  • Koerner, J. F. and Cotman, C. W. (1981) Micromolar L-2-amino-4-phosphonobutyric acid selectively inhibits perforant path synapses from lateral entorhinal cortex. Brain Res. 216, 192–198.

    Article  PubMed  CAS  Google Scholar 

  • Kozikowski, A. P., Tuckmantel, W., Liao, Y., Manev, H., Ikonomovic, S., and Wroblewski, J. T. (1993) Synthesis and metabotropic receptor activity of the novel rigidified glutamate analogues (+)- and (—)-trans-azetidine-2,4-dicarboxylic acid and their N-methyl derivatives. J. Med. Chem. 36, 2706–2708.

    Article  PubMed  CAS  Google Scholar 

  • Kristensen, P., Suzdak, P. D., and Thomsen, C. (1993) Expression pattern and pharmacology of the rat type IV metabotropic glutamate receptor. Neurosci. Lett. 155, 159–162.

    Article  PubMed  CAS  Google Scholar 

  • Krogsgaard-Larsen, P., Honore, T., Hansen, J. J., Curtis, D. R., and Lodge, D. (1980) New class of glutamate agonist structurally related to ibotenic acid. Nature 284, 64–66.

    Article  PubMed  CAS  Google Scholar 

  • Littman, L., Glatt, B. S., and Robinson, M. B. (1993) Multiple subtypes of excitatory amino acid receptors coupled to the hydrolysis of phosphoinositides in rat brain. J. Neurochem. 61, 586–593.

    Article  PubMed  CAS  Google Scholar 

  • Lombardi, G., Alesiani, M., Leonardi, P., Cherici, G., Pellicciari, R., and Moroni, F. (1993) Pharmacological characterization of the metabotropic glutamate receptor inhibiting D-[’H1aspartate output in rat striatum. Brit. J. Pharmacol. 110, 1407–1412

    Article  CAS  Google Scholar 

  • Lonart, G., Alagarsamy, S., Ravula, R., Wang, J., and Johnson, K. M. (1992) Inhibition of the phospholipase C-linked metabotropic glutamate receptor by 2-amino3-phosphonopropionate is dependent on extracellular calcium. J. Neurochem. 59, 772–775.

    Article  PubMed  CAS  Google Scholar 

  • Manzoni, O., Fagni, L., Pin, J.-P., Rassendren, F., Poulat, F., Sladeczek, F., and Bockaert, J. (1990) (trans)-1-Amino-cyclopentyl-1,3-dicarboxylate stimulates quisqualate phosphoinositide-coupled receptors but not ionotropic glutamate receptors in striatal neurons and xenopus oocytes. Mol. Pharmacol. 38, 1–6.

    Google Scholar 

  • Manzoni, O. J. J., Poulat, F., Do, E., Sahuquet, A., Sassetti, I., Bockaert, J., and Sladeczek, F. A. J. (1991a) Pharmacological characterization of the quisqualate receptor coupled to phospholipase C (Qp) in striatal neurons. Eur. J. Pharmacol. 207, 231–241.

    Article  PubMed  CAS  Google Scholar 

  • Manzoni, O. J. J., Prezeau, L., and Bockaert, J. (1991b) ß-N-methylamino-L-alanine is a low-affinity agonist of metabotropic glutamate receptors. NeuroReport 2, 609–611.

    Article  PubMed  CAS  Google Scholar 

  • Masu, M., Tanabe, Y., Tsuchida, K., Shigemoto, R., and Nakanishi, S. (1991) Sequence and expression of a metabotropic glutamate receptor. Nature 349, 760–765.

    Google Scholar 

  • Mayer, M. L. and Miller, R. J. (1990) Excitatory amino acid receptors, second messengers and regulation of intracellular Ca’ in mammalian neurons. Trends Pharmacol. Sci. 11, 254–260.

    Article  PubMed  CAS  Google Scholar 

  • Meldrum, B. and Garthwaite, J. (1990) Excitatory amino acid neurotoxicity and neurodegenerative disease. Trends Pharmacol. Sci. 11, 379–387.

    Article  PubMed  CAS  Google Scholar 

  • Miller, R. F. and Slaughter, M. M. (1986) Excitatory amino acid receptors of the retina: diversity of subtypes and conductance mechanisms. Trends Neurosci. (May), 211–218.

    Google Scholar 

  • Minakami, R., Katsuki, F., and Sugiyama, H. (1993) A variant of metabotropic glutamate receptor subtype 5: an evolutionally conserved insertion with no termination codon. Biochem. Biophys. Res. Comm. 194, 622–627.

    Article  PubMed  CAS  Google Scholar 

  • Monaghan, D. T., Bridges, R. J., and Cotman, C. W. (1989) The excitatory amino acid receptors: their classes, pharmacology, and distinct properties in the function of the central nervous system. Annu. Rev. Pharmacol. Toxicol. 29, 365–402.

    Google Scholar 

  • Murphy, S. N. and Miller, R. J. (1988) A glutamate receptor regulates Cat+ mobilization in hippocampal neurons. Proc. Natl. Acad. Sci. USA 85, 8737–8741.

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa, Y., Saitoh, K., Ishihara, T., Ishida, M., and Shinozaki, H. (1990) (2S,3S,4S)a-(Carboxycyclopropyl)glycine is a novel agonist of metabotropic glutamate receptors. Eur. J. Pharmacol. 184, 205–206.

    Google Scholar 

  • Nakajima, Y., Iwakabe, H. Akazawa, C., Nawa, H., Shigemoto, R., Mizuno, N., and Nakanishi, S. (1993) Molecular characterization of a novel retinal metabotropic glutamate receptor mGluR6 with a high agonist selectivity for L-2-amino-4phosphonobutyrate. J. Biol. Chem. 266 11,868–11,873.

    Google Scholar 

  • Nakanishi, S. (1992) Molecular diversity of glutamate receptors and implications for brain function. Science 258, 597–603.

    Article  PubMed  CAS  Google Scholar 

  • Nicoletti, F., Casabona, G., Genazzani, A. A., L’Episcopo, M. R., and Shinozaki, H. (1993) (2S,1’R,2’R,3’R)-2-(2,3-Dicarboxycyclopropyl)glycine enhances quisqualate-stimulated inositol phospholipid hydrolysis in hippocampal slices. Eur. J. Pharmacol. 245, 297–298.

    Google Scholar 

  • Nicoletti, F., Iadarola, M. J., Wroblewski, J. T., and Costa, E. (1986a) Excitatory amino acid recognition sites coupled with inositol phospholipid metabolism: Developmental changes and interaction with a1-adrenoceptors. Proc. Natl. Acad. Sci. USA 83, 1931–1935.

    Article  PubMed  CAS  Google Scholar 

  • Nicoletti, F., Meek, J. L., Iadarola, M. J., Chuang, D. M., Roth, B. L., and Costa, E. (1986b) Coupling of inositol phospholipid metabolism with excitatory amino acid recognition sites in rat hippocampus. J. Neurochem. 46, 40–46.

    Article  PubMed  CAS  Google Scholar 

  • Nicoletti, F., Wroblewski, J. T., Novelli, A., Alho, H., Guidotti, A., and Costa, E. (1986c) The activation of inositol phospholipid metabolism as a signal-transducing system for excitatory amino acids in primary cultures of cerebellar granule cells. J. Neurosci. 6, 1905–1911.

    PubMed  CAS  Google Scholar 

  • Nishizuka, Y. (1984) Turnover of inositol phospholipids and signal transduction. Science 225, 1365–1370.

    Article  PubMed  CAS  Google Scholar 

  • Ohfune, Y., Shimamoto, K., Ishida, M., and Shinozaki, H. (1993) Synthesis of L-2(2,3-dicarboxycyclopropyl)glycines, novel conformationally restricted glutamate analogues. Bioorganic & Med. Chem. Lett. 3, 15–18.

    Google Scholar 

  • Okada, D. (1992) Two pathways of cyclic GMP production through glutamate receptor-mediated nitric oxide synthesis. J. Neurochem. 59, 1203–1210.

    Article  PubMed  CAS  Google Scholar 

  • Ormandy G. C. (1992) Inhibition of excitatory amino acid-stimulated phosphoinositide hydrolysis in rat hippocampus by L-aspartate- 3-hydroxamate. Brain Res. 572, 103–107.

    Article  PubMed  CAS  Google Scholar 

  • Osborne N. N. (1990) Stimulatory and inhibitory actions of excitatory amino acids on inositol phospholipid metabolism in rabbit retina. Evidence for a specific quisqualate receptor subtype associated with neurones. Exp. Eye Res. 50, 397–405.

    Article  PubMed  CAS  Google Scholar 

  • Palmer, E., Monaghan, D. T., and Cotman, C. W. (1988) Glutamate receptors and phosphoinositide metabolism: stimulation via quisqualate receptors is inhibited by N-methyl-D-aspartate receptor activation. Mol. Brain Res. 4, 161–165.

    Article  CAS  Google Scholar 

  • Palmer, E., Monaghan, D. T., and Cotman, C. W. (1989) Trans-ACPD, a selective agonist of the phosphoinositide-coupled excitatory amino acid receptor. Eur. J. Pharmacol. 166, 585–587.

    Article  PubMed  CAS  Google Scholar 

  • Pearce, B., Albrecht, J., Morrow, C., and Murphy, S. (1986) Astrocyte glutamate receptor activation promotes inositol phospholipid turnover and calcium flux. Neurosci. Lett. 72, 335–340.

    Article  PubMed  CAS  Google Scholar 

  • Porter, R. H. P. and Roberts, P. J. (1993) Glutamate metabotropic receptor activation in neonatal rat cerebral cortex by sulphur-containing excitatory amino acids. Neurosci. Lett. 154, 78–80.

    Article  PubMed  CAS  Google Scholar 

  • Porter, R. H. P., Briggs, R. S. J., and Roberts, P. J. (1992a) L-Aspartate-13-hydroxyamate exhibits mixed agonist/antagonist activity at the glutamate metabotropic receptor in rat neonatal cerebrocortical slices. Neurosci. Lett. 144, 87–89.

    Article  PubMed  CAS  Google Scholar 

  • Porter, R. H. P., Roberts, P. J., Jane, D. E., and Watkins, J. C. (1992b) (S)homoquisqualate: a potent agonist at the glutamate metabotropic receptor. Br. J. Pharmacol. 106, 509–510.

    Google Scholar 

  • Recasens, M., Guiramand, J., Nourigat, A., Sassetti, I., and Devilliers, G. (1988) A new quisqualate receptor subtype (sAA2) responsible for the glutamate-induced inositol phosphate formation in rat brain synaptoneurosomes. Neurochem. Int. 13, 463–467.

    Article  PubMed  CAS  Google Scholar 

  • Recasens, M., Sassetti, I., Nourigat, A., Sladeczek, F., and Bockaert, J. (1987) Characterization of subtypes of excitatory amino acid receptors involved in the stimulation of inositol phosphate synthesis in rat brain synaptoneurosomes. Eur. J. Pharmacol. 141, 87–93.

    Article  PubMed  CAS  Google Scholar 

  • Sacaan, A. I. and Schoepp, D. D. (1992) Activation of hippocampal metabotropic excitatory amino acid receptors leads to seizures and neuronal damage. Neurosci. Lett. 139, 77–82.

    Article  PubMed  CAS  Google Scholar 

  • Schoepp, D. D. (1993) The biochemical pharmacology of metabotropic glutamate receptors. Biochem. Soc. Trans. 21, 97–102.

    PubMed  CAS  Google Scholar 

  • Schoepp, D. D. and Conn, P. J. (1993) Metabotropic glutamate receptors in brain function and pathology. Trends in Pharmacol. Sci. 14, 13–20.

    Article  CAS  Google Scholar 

  • Schoepp, D. D. and Hillman, C. C. (1990) Developmental and pharmacological characterization of quisqualate, ibotenate, and trans-l-amino-1,3-cyclopentanedicarboxylic acid stimulations of phosphoinositide hydrolysis in rat cortical brain slices. Bio genic Amines 7, 331–340.

    CAS  Google Scholar 

  • Schoepp, D. D. and Johnson, B. G. (1988) Excitatory amino acid agonist-antagonist interactions at 2-amino-4-phosphonobutyric acid-sensitive quisqualate receptors coupled to phosphoinositide hydrolysis in slices of rat hippocampus. J. Neurochem. 50, 1605–1613.

    Article  PubMed  CAS  Google Scholar 

  • Schoepp, D. D. and Johnson B. G. (1989a) Comparison of excitatory amino acid-stimulated phosphoinositide hydrolysis and N-[’H]acetylaspartylglutamate binding in rat brain: Selective inhibition of phosphoinositide hydrolysis by 2-amino3-phosphonopropionate. J. Neurochem. 53 273–278.

    Google Scholar 

  • Schoepp, D. D. and Johnson, B. G. (1989b) Inhibition of excitatory amino acid-stimulated phosphoinositide hydrolysis in the neonatal rat hippocampus by 2 amino-3-phosphonopropionate. J. Neurochem. 53, 1865–1870.

    Article  PubMed  CAS  Google Scholar 

  • Schoepp, D. D. and Johnson, B. G. (1991) In vivo 2-amino-3-phosphonopropionic acid administration to neonatal rats selectively inhibits metabotropic excitatory amino acid receptors ex vivo in brain slices. Neurochem. Int. 18, 411–417.

    CAS  Google Scholar 

  • Schoepp, D. D. and Johnson, B. G. (1993a) Pharmacology of metabotropic glutamate receptor inhibition of cyclic AMP formation in the adult rat hippocampus. Neurochem. Int. 22, 277–283.

    Google Scholar 

  • Schoepp, D. D. and Johnson, B. G. (1993b) Metabotropic glutamate receptor modulation of cAMP accumulation in the neonatal rat hippocampus. Neuropharmacology 32 1359–1365.

    Google Scholar 

  • Schoepp, D. D. and True, R. A. (1992) 1S,3R-ACPD-sensitive (metabotropic) [3H]glutamate receptor binding in membranes. Neurosci. Lett. 145, 100–104.

    Google Scholar 

  • Schoepp, D., Bockaert, J., and Sladeczek, F. (1990a) Pharmacological and functional characteristics of metabotropic excitatory amino acid receptors. Trends in Pharmacol. Sci. 11, 508–515.

    Article  CAS  Google Scholar 

  • Schoepp, D. D., Johnson, B. G., Smith, E. C. R., and McQuaid, L. A. (1990b) Stereoselectivity and mode of inhibition of phosphoinositide-coupled excitatory amino acid receptors by 2-amino-3-phosphonopropionic acid. MolecularPharmacol. 38, 222–228.

    CAS  Google Scholar 

  • Schoepp, D. D., Johnson, B. G., Salhoff, C. R. McDonald, J. W., and Johnston, M. V. (1991a) In vitro and in vivo pharmacology of trans-and cis-(±)-1-amino-1,3cyclopentanedicarboxylic acid: dissociation of metabotropic and ionotropic excitatory amino acid receptor effects. J. Neurochem. 56 1789–1796.

    Google Scholar 

  • Schoepp, D. D., Johnson, B. G., True, R. A., and Monn, J. A. (1991b) Comparison of (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid (1S,3R-ACPD)- and 1R,3SACPD-stimulated brain phosphoinositide hydrolysis. Eur. J. Pharmacol.—Mol. Pharmacol. Section 207, 351–353.

    Article  CAS  Google Scholar 

  • Schoepp, D. D., Johnson, B. G., and Monn, J. A. (1992) Inhibition of cyclic AMP formation by a selective metabotropic glutamate receptor agonist. J. Neurochem. 58, 1184–1186.

    Article  PubMed  CAS  Google Scholar 

  • Shinozaki, H., and Ishida, M. (1992) A metabotropic L-glutamate receptor agonist: pharmacological difference between rat central neurones and crayfish neuromuscular junctions. Comp. Biochem. Physiol. 103C, 13–17.

    CAS  Google Scholar 

  • Sladeczek, F., Pin, J.-P., Recasens, M., Bockaert, J., and Weiss, S. (1985) Glutamate stimulates inositol phosphate formation in striatal neurones. Nature 317, 717–719.

    Article  PubMed  CAS  Google Scholar 

  • Sugiyama, H., Ito, I., and Hirono, C. (1987) A new type of glutamate receptor linked to inositol phospholipid metabolism. Nature 325, 531–533.

    Article  PubMed  CAS  Google Scholar 

  • Sugiyama, H., Ito, I., and Watanabe, M. (1989) Glutamate receptor subtypes may be classified into two major categories: a study on xenopus oocytes injected with rat brain mRNA. Neuron 3, 129–132.

    Article  PubMed  CAS  Google Scholar 

  • Tanabe, S., Ito, I. and Sugiyama, H. (1991) Possible heterogeneity of metabotropic glutamate receptors induced in xenopus oocytes by rat brain mRNA. Neurosci. Res. 10 71–77.

    Google Scholar 

  • Tanabe, Y., Masu, M., Ishii, T., Shigemoto, R., and Nakanishi, S. (1992) A family of metabotropic glutamate receptors. Neuron 8, 169–179.

    Article  PubMed  CAS  Google Scholar 

  • Tanabe, Y., Nomura, A., Masu, M., Shigemoto, R., Mizuno, N., and Nakanishi, S. (1993) Signal transduction, pharmacological properties, and expression patterns of two rat metabotropic glutamate receptors, mGluR3 and mGluR4. J. Neurosci. 13, 1372–1378.

    PubMed  CAS  Google Scholar 

  • Thomsen, C. and Suzdak, P. D. (1993a) 4-Carboxy-3-hydroxyphenylglycine, an antagonist at type I metabotropic glutamate receptors. Eur. J. Pharmacol. 245, 299–301.

    Google Scholar 

  • Thomsen, C. and Suzdak, P. D. (1993b) Serine-O-phosphate has affinity for type-IV, but not type-I, metabotropic glutamate receptor. NeuroReport 4, 1099–1101.

    Google Scholar 

  • Thomsen, C., Mulvihill, E. R., Haldeman, B., Pickering, D. S., Hampson, D. R., and Suzdak, P. D. (1993) A pharmacological characterization of the mGluRla subtype of the metabotropic glutamate receptor expressed in a cloned baby hamster kidney cell line. Brain Res. 619, 22–28.

    Article  PubMed  CAS  Google Scholar 

  • Watkins, J. C., Krogsgaard-Larsen, P., and Honore, T. (1990) Structure—activity relationships in the development of excitatory amino acid receptor agonists and competitive antagonists. Trends Pharmacol. Sci. 11, 25–33.

    Article  PubMed  CAS  Google Scholar 

  • Watson, G. B., Monaghan, D. T., and Lanthorn, T. H. (1990) Selective activation of oscillatory currents by trans-ACPD in rat brain mRNA-injected xenopus oocytes and their blockade by NMDA. Eur. J. Pharmacol. 179, 479–481.

    Google Scholar 

  • Weiss, S. (1989) Two distinct quisqualate receptor systems are present on striatal neurons. Brain Res. 491, 189–193.

    Article  PubMed  CAS  Google Scholar 

  • Weiss, J. H. Christine, C. W., and Choi, D. W. (1989) Bicarbonate dependence of glutamate receptor activation by (3-N-methylamino-L-alanine: channel recording and study with related compounds. Neuron 3 321–326.

    Google Scholar 

  • Winder, D. G. and Conn P. J. (1992) Activation of metabotropic glutamate receptors in the hippocampus increases cyclic AMP accumulation. J. Neurochem. 59 375378.

    Google Scholar 

  • Winder, D. G., Smith, T., and Conn, P. J. (1993) Pharmacological differentiation of metabotropic glutamate receptors coupled to potentiation of cyclic adenosine monophosphate responses and phosphoinositide hydrolysis. J. Pharmacol. Exp. Ther. 266, 518–525.

    Google Scholar 

  • Wroblewska, B. Wroblewski, J. T., Saab, O. H., and Neale, J. H. (1993) NAcetylaspartylglutamate inhibits forskolin-stimulated cyclic AMP levels via a metabotropic glutamate receptor in cultured cerebellar granule cells. J. Neurochem. 61 943–948.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Schoepp, D.D. (1994). Pharmacological Properties of Metabotropic Glutamate Receptors. In: Conn, P.J., Patel, J. (eds) The Metabotropic Glutamate Receptors. The Receptors. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-4757-2298-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2298-7_2

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-006-9

  • Online ISBN: 978-1-4757-2298-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics