Skip to main content

Drosophila melanogaster as a Model System for Fruit Flies of Economic Importance: The Vitelline Membrane Protein 32E Gene Regulatory Sequences

  • Conference paper
  • 306 Accesses

Abstract

The greatest development in molecular biology has been achieved in animal species such as Tetrahyntena, Drosophila, Xenopus, historically used as model systems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Burke, T., Waring, G.L., Popodi, E., and Minoo, P. 1987. Characterization and sequence of follicle cell genes selectively expressed during vitelline membrane formation in Drosophila. Dev. Biol. 124: 441–450.

    Google Scholar 

  • Gigliotti, S., Graziani, F., De Ponti, L., Rafti, F., Mazni, A., Lavorgna, G., Gargiulo, G., and Malva, C. 1989. Sex, tissue and stage specific expression of a vitelline membrane protein gene from region 32 of the second chromosome of D. melanogaster. Devi. Genet. 10: 33–41.

    Article  CAS  Google Scholar 

  • Karess, R.E. and Rubin, G.M. 1984. Analysis of P transposable element function in Drosophila. Cell 38: 135–146.

    Article  PubMed  CAS  Google Scholar 

  • King, R.C. 1970. Ovarian development in Drosophila melanogaster. New York: Academic Press.

    Google Scholar 

  • Lebrach, H., Diamond, D., Wozney, J.M., and Boedtker, H. 1977. RNA molecular weight determination by gel electrophoresis under denaturing conditions, a critic reexamination. Biochemistry 16: 4743–4751.

    Google Scholar 

  • Logan, S.K., Garabedian, M.J. and Wensink, P.C. 1989. DNA region that regulate the ovarian transcriptional specificity of Drosophila yolk protein genes. Genes Dev. 3: 1453–1461.

    Article  PubMed  CAS  Google Scholar 

  • Logan, S.K. and Wensink, P.C. 1990. Ovarian follicle cell enhancer from the Drosophila yolk protein genes: different segments of one enhancer have different cell-type specificities that interact to give normal expression. Genes Dev. 4: 613–623.

    Article  PubMed  CAS  Google Scholar 

  • Maniatis, T., Fritsch, E.F. and Sambrook, J. 1982. Molecular Cloning. Laboratory Manual. New York. New York: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  • Mariani, B.D., Lingappa, J.R., and Kafatos, F. 1988. Temporal regulation in development: negative and positive cis regulators dictate the precise timing of expression of a Drosophila chorion gene. Proc. Natl. Acad. Sci. USA 85: 3029–3033.

    Google Scholar 

  • Mindrinos, M.N., Scherer, L.J., Garcini, F.J., Kwan, H., Jacobs, K.A., and Petri, W.H. 1985. Isolation and chromosomal location of putative vitelline membrane genes in Drosophila melanogaster. EMBO J. 4: 147–153.

    PubMed  CAS  Google Scholar 

  • Popodi, E., Minoo, P., Burke, T., and Waring, G.L. 1988. Organization and expression of a second chromosome follicle cell gene cluster in Drosophila. Devl. Biol. 127: 248–256.

    Google Scholar 

  • Rafti, F., Gargiulo, G., Manzi, A., Malva, C., Grossi, G., Andone, S., and Graziani, F. 1988. Isolation and structural analysis of a ribosomal protein gene in D. melanogaster. Nucl. Acids Res., 16: 4915–4926.

    Google Scholar 

  • Rubin, G.M. and Spradling, A.C. 1982. Genetic transformation of Drosophila with transposable element vectors. Science 218: 348–353.

    Article  PubMed  CAS  Google Scholar 

  • Sandler, L. 1977. Evidence for a set of closely linked autoBomal genes that interact with sex chromosome heterochromatin in Drosophila melanogaster. Genetics 86: 567–582.

    PubMed  CAS  Google Scholar 

  • Scherer, L.J., Harris, D.H. and Petri, W.H. 1988. Drosophila vitelline membrane genes contain a 114 base pair region of highly conserved coding sequence. Devl. Biol. 130: 786–788.

    Google Scholar 

  • Spradling, A.C. and Rubin, G.M. 1982. Transposition of cloned P elements into Drosophila germ line chromosomes. Science 218: 341–347.

    Article  PubMed  CAS  Google Scholar 

  • Steller, H. and Pirrotta, V. 1985. A transposable P vector that confers selectable G418 resistance to Drosophila larvae. EMBO J. 4: 167–171.

    PubMed  CAS  Google Scholar 

  • Touas, P.P. and Kafatos, F.C. 1990. Functional dissection of an early Drosophila chorion gene promoter: expression throughout the follicular epithelium is under spatially composite regulation. EMBO J. 9: 1457–1464.

    Google Scholar 

  • Whong, Y.C., Pustell, J., Spoerel, N., and Kafatos, F.C. 1985. Coding and potential regulatory sequences of a cluster of chorion genes in D. melanogaster. Chromosoma 92: 124–135.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this paper

Cite this paper

Giglioti, S., Gargiulo, G., Manzi, A., Graziani, F., Malva, C. (1993). Drosophila melanogaster as a Model System for Fruit Flies of Economic Importance: The Vitelline Membrane Protein 32E Gene Regulatory Sequences. In: Aluja, M., Liedo, P. (eds) Fruit Flies. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-2278-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2278-9_14

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-2280-2

  • Online ISBN: 978-1-4757-2278-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics