Skip to main content

Part of the book series: Texts in Applied Mathematics ((TAM,volume 12))

  • 747 Accesses

Abstract

In this chapter direct methods for solving systems of linear equations

$$Ax = b.A = \left[ {\begin{array}{*{20}{c}} {{a_{11}}}& \cdots &{{a_{{1_n}}}} \\ \vdots &{}& \vdots \\ {{a_{{n_1}}}}& \cdots &{{a_{nn}}} \end{array}} \right],b = \left[ {\begin{array}{*{20}{c}} {{b_1}} \\ \vdots \\ {{b_n}} \end{array}} \right]$$

will be presented. Here A is a given n × n matrix, and b is a given vector. We assume in addition that A and b are real, although this restriction is inessential in most of the methods. In contrast to the iterative methods (Chapter 8), the direct methods discussed here produce the solution in finitely many steps, assuming computations without roundoff errors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References for Chapter 4

  • Barker, V. A. (Ed.): Sparse Matrix Techniques. Lecture Notes in Mathematics 572. Berlin, Heidelberg, New York: Springer-Verlag (1977).

    Google Scholar 

  • Bartels, R. H.: A stabilization of the simplex method. Numer. Math. 16, 414–434 (1971).

    Article  MathSciNet  MATH  Google Scholar 

  • Bauer, F. L.: Genauigkeitsfragen bei der Lösung linearer Gleichungssysteme. ZAMM 46, 409–421 (1966).

    Article  MATH  Google Scholar 

  • Björck, A.: Least squares methods. In: Ciarlet, Lions, Eds. (1990), 465–647 (1990).

    Google Scholar 

  • Blum, E., Oettli, W.: Mathematische Optimierung. Berlin, Heidelberg, New York: Springer (1975).

    Google Scholar 

  • Ciarlet, P. G., Lions, J. L. (Eds): Handbook of Numerical Analysis, Vol. 1. Finite Difference Methods (Part 1), Solution of Equations in l“ (Part 1). Amsterdam: North Holland (1990).

    Google Scholar 

  • Collatz, L.: Functional Analysis and Numerical Mathematics. New York: Academic Press (1966).

    Google Scholar 

  • Daniel, J. W., Gragg, W. B., Kaufmann, L., Stewart, G. W.: Reorthogonalization and stable algorithms for updating the Gram-Schmidt QR factorization. Math. Comp. 30, 772–795 (1976).

    MathSciNet  MATH  Google Scholar 

  • Dantzig, G. B.: Linear Programming and Extensions. Princeton, N.J.: Princeton University Press (1963).

    Google Scholar 

  • Dongarra, J. J., Bunch, J. R., Moler, C. B., Stewart, G. W.: UNPACK Users Guide. Philadelphia: SIAM Publications (1979).

    Book  Google Scholar 

  • Duff, I. S., Erisman, A. M., Reid, J. K.: Direct Methods for Sparse Matrices. Oxford: Oxford University Press (1986).

    Google Scholar 

  • Duff, I. S., Erisman, A. M., Reid, J. K, Reid, J. K.: MA27: A set of FORTRAN subroutines for solving sparse symmetri sets of linear equations. Techn. Rep. AERE R 10533, Harwell, U.K. (1982).

    Google Scholar 

  • Eisenstat, S. C., Gursky, M. C., Schultz, M. H., Sherman, A. H.: The Yale sparse matrix package I. The symmetric codes. Internat. J. Numer. Methods Engrg. 18, 1145–1151 (1982).

    Article  MATH  Google Scholar 

  • Forsythe, G. E., Moler, C. B.: Computer Solution of Linear Algebraic Systems. Series in Automatic Computation. Englewood Cliffs, N.J.: Prentice-Hall (1967).

    Google Scholar 

  • Gass, S. T.: Linear Programming. 3d edition. New York: McGraw-Hill (1969).

    Google Scholar 

  • George, J. A., Liu, J. W.: Computer Solution of Large Sparse Positive Definite Systems. Englewood Cliffs, N.J.: Prentice-Hall (1981).

    MATH  Google Scholar 

  • George, J. A., Liu, J. W.: The evolution of the minimum degree ordering algorithm. SIAM Review 31, 1–19 (1989).

    MathSciNet  MATH  Google Scholar 

  • George, J. A., Liu, J. W.:, Ng, E. G.: Users guide for SPARSEPAK: Waterloo sparse linear equa-tions package. Tech. Rep. CS-78–30, Dept. of Computer Science, University of Waterloo, Waterloo (1980).

    Google Scholar 

  • Gill, P. E., Golub, G. H., Murray, W., Saunders, M. A.: Methods for modifying matrix factorizations. Math. Comp. 28, 505–535 (1974).

    Article  MathSciNet  MATH  Google Scholar 

  • Golub, G. H., van Loan, C. F.: Matrix Computations. Baltimore: The John Hopkins University Press (1983).

    MATH  Google Scholar 

  • Grossmann, W.: Grundzüge der Ausgleichsrechnung. 3. Aufl. Berlin, Heidelberg, New York: Springer (1969).

    Book  Google Scholar 

  • Guest, P. G.: Numerical Methods of Curve Fitting. Cambridge: University Press (1961).

    MATH  Google Scholar 

  • Hadley, G.: Linear Programming. Reading, MA: Addison-Wesley (1962). Householder, A. S.: The Theory of Matrices in Numerical Analysis. New York: Blaisdell (1964).

    Google Scholar 

  • Lawson, C. L., Hanson, H. J.: Solving Least Squares Problems. Englewood Cliffs, N.J.: Prentice-Hall (1974).

    MATH  Google Scholar 

  • Murty, K. G.: Linear and Combinatorial Programming. New York: Wiley (1976).

    MATH  Google Scholar 

  • Prager, W., Oettli, W.: Compatibility of approximate solution of linear equations with given error bounds for coefficients and right hand sides. Num. Math. 6, 405–409 (1964).

    Google Scholar 

  • Reid, J. K. (Ed): Large Sparse Sets of Linear Equations. London, New York: Academic Press (1971).

    MATH  Google Scholar 

  • Rose, D. J.: A graph-theoretic study of the numerical solution of sparse positive definite systems of linear equations, pp. 183–217. In: Graph Theory and Computing, R. C. Read, ed., New York: Academic Press (1972).

    Google Scholar 

  • Rose, D. J., Willoughby, R. A. (Eds.): Sparse Matrices and Their Applications. New York: Plenum Press (1972).

    Google Scholar 

  • Sautter, W.: Dissertation TU München (1971).

    Google Scholar 

  • Schwarz, H. R., Rutishauser, H., Stiefel, E.: Numerik symmetrischer Matrizen. Leitfäden der angewandten Mathematik, Bd. 11. Stuttgart: Teubner 1968.

    Google Scholar 

  • Seber, G. A. F.: Linear Regression Analysis. New York: Wiley (1977).

    MATH  Google Scholar 

  • Stewart, G. W.: Introduction to Matrix Computations. New York: Academic Press (1973).

    MATH  Google Scholar 

  • Tewarson, R. P.: Sparse Matrices. New York: Academic Press (1973).

    MATH  Google Scholar 

  • Wilkinson, J. H.: The Algebraic Eigenvalue Problem. Monographs on Numerical Analysis, Oxford: Clarendon Press (1965).

    Google Scholar 

  • Wilkinson, J. H., Reinsch, Ch.: Linear Algebra. Handbook for Automatic Computation, Vol. II. Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, Bd. 186. Berlin, Heidelberg, New York: Springer (1971).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Stoer, J., Bulirsch, R. (1993). Systems of Linear Equations. In: Introduction to Numerical Analysis. Texts in Applied Mathematics, vol 12. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-2272-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2272-7_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-2274-1

  • Online ISBN: 978-1-4757-2272-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics