Skip to main content

Influence of GABA on Potassium Channels in Hippocampal Neurons

  • Chapter
Book cover Methods in Pharmacology

Abstract

A wide range of neurotransmitters, such as gamma-aminobutyric acid (GABA), serotonin (5-hydroxytryptamine, 5HT), acetylcholine, noradrenaline, dopamine, and adenosine, have been found to activate potassium channels in central neurons. It is possible that many of these transmitters activate the same potassium channels (Nicoll et al., 1990). An increase in potassium conductance would make cells less excitable and would clearly influence neuronal behavior. In this chapter, we will focus our attention on the characteristics of potassium channels activated and modulated by GABA in the mammalian hippocampus. Emphasis will be placed on “subconductance” states of these channels and their relationship to normal channel behavior. It may turn out that the other transmitters activate and modulate channels in a similar way.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alger, B. E. 1984. Characteristics of a slow hyperpolarizing synaptic potential in rat hippocampal pyramidal cells in vitro. J. Neurophysiol., 52: 892–910.

    CAS  Google Scholar 

  • Andrade, R., Malenka, R. C., and Nicoll, R. A. 1986. A G protein couples serotonin and GABAB receptors to the same channels in hippocampus. Science, 234: 1261–1265.

    Article  PubMed  CAS  Google Scholar 

  • Atkins, P. T., Surmeier, D. J., and Kitai, S. T. 1990. Muscarinic modulation of a transient K+ conductance in rat neostriatal neurons. Nature, 344: 240–242.

    Article  Google Scholar 

  • Axelrod, J. A., Burch, R. M., and Jelsema, C. L. 1988. Receptor-mediated activation of phospholipase A2 via GTP-binding proteins: Arachidonic acid and its metabolites as second messengers. Trends Neurosci., 11: 117–123.

    Article  PubMed  CAS  Google Scholar 

  • Baum, L. E. 1972. An inequality and associated maximization technique in statistical estimation for probabilistic functions of Markov process. Inequalities, 3: 1–8.

    Google Scholar 

  • Baum, L. E., and Petrie, T. 1966. Statistical inference for probabilistic functions of finite state Markov chains. Ann. Math. Statist., 37: 1554–1563.

    Article  Google Scholar 

  • Baum, L. E., Petrie, T., Soules, G., and Weiss, N. 1970. A maximization technique occurring in the statistical probabilisticy analysis of robabilistic functions of Markov chains. Ann. Math. Statist. 41: 164–171.

    Article  Google Scholar 

  • Billingsley, P. 1961. Statistical Inference for Markov Processes. University of Chicago Press, Chicago. Bormann, J. 1988. Electrophysiology of GABAA and GABAB receptor subtypes. Trends Neurosci., 11: 11 2116.

    Google Scholar 

  • Bowery, N. 1989. GABAB receptors and their significance in mammalian pharmacology. Trends Pharmacol. Sci., 10: 401–407.

    Article  PubMed  CAS  Google Scholar 

  • Bowery, N. G., Hill, D. R., Hudson, A. L., Doble, A., Middlemiss, D. N., Shaw, J., and Turnbull, M. 1980. (-)Baclofen decreases neurotransmitter release in the mammalian CNS by an action at a novel GABA receptor. Nature, 283: 92–94.

    Google Scholar 

  • Bowery, N. G., Doble, A., Hill, D. R., Hudson, A. L., Shaw, J. S., Turnbull, M. J., and Warrington, R. 1981. Bicuculline-insensitive GABA receptors on peripheral autonomic nerve terminals. Eur. J. Pharmacol., 71: 53–70.

    Article  PubMed  CAS  Google Scholar 

  • Brown, A. M., and Birnbaumer, L. 1988. Direct G protein gating of ion channels. Am. J. Physiol., 23: H401 - H410.

    Google Scholar 

  • Chung, S. H., and Kennedy, R. A. 1991. Forward-backward nonlinear filtering technique for extracting small biological signals from noise. J. Neurosci. Meth., 40: 71–86.

    Article  CAS  Google Scholar 

  • Chung, S.-H., Moore, J. B., Xia, L., Premkumar, L. S., and Gage, P. W. 1990. Characterization of single channel currents using digital signal processing techniques based on hidden Markov models. Phil. Trans. R. Soc. Lond. B, 329: 265–285.

    Article  CAS  Google Scholar 

  • Colmers, W. F., and Williams, J. T. 1988. Pertussis toxin treatment discriminates between pre-and postsynaptic actions of baclofen in rat dorsal raphe nucleus in vitro. Neurosci. Lett., 93: 300–306.

    Article  CAS  Google Scholar 

  • Colquhoun, D., and Hawkes, A. G. 1977. Relaxation and fluctuation of membrane currents that flow through drug-operated channels. Proc. R. Soc. B, Lond. B, 199: 231–262.

    Article  CAS  Google Scholar 

  • Colquhoun, D., and Hawkes, A. G. 1981. On the stochastic properties of single ion channels. Proc. R. Soc. Lond. B, 211: 205–235.

    Article  PubMed  CAS  Google Scholar 

  • Colquhoun, D., and Hawkes, A. G. 1982. On the stochastic properties of bursts of single ion channel openings and of clusters of bursts. Phil. Trans. R. Soc. Lond. B, 300: 1–59.

    Article  CAS  Google Scholar 

  • Davies, C. H., Davies, S. N., and Collingridge, G. L. 1990. Paired-pulse depression of monosynaptic GABA- mediated inhibitory postsynaptic responses in rat hippocampus. J. Physiol. 424: 513–531.

    PubMed  CAS  Google Scholar 

  • Davies, C. H., Starkey, S. J., Pozza, M. F., and Collingridge, G. L. 1991. GABA autoreceptors regulate the induction of LTP. Nature, 349: 609–611.

    Article  PubMed  CAS  Google Scholar 

  • Deisz, R. A., and Lux, H. D. 1985. r-Aminobutyric acid-induced depression of calcium currents of chick sensory neurons. Neurosci. Lett., 56: 205–210.

    Google Scholar 

  • Dempster, A. P., Laird, N. M., and Rubin, D. B. 1977. Maximum likelihood estimation from incomplete data via the EM algorithm. J. R. Statist. Soc. B, 39: 1–38.

    Google Scholar 

  • Dolphin, A. C. 1990. G protein modulation of calcium currents in neurons. Annu. Rev. Physiol., 52: 243255.

    Google Scholar 

  • Dolphin, A. C., and Scott, R. H. 1987. Calcium channel currents and their inhibition by (-)-baclofen in rat sensory neurones: Modulation by guanine nucleotides. J. Physiol., 386: 1–17.

    PubMed  CAS  Google Scholar 

  • Dolphin, A. C., McGuirk, S. M., and Scott, R. H. 1989. An investigation into the mechanisms of inhibition of calcium channel currents in cultured sensory neurons of the rat by guanine nucleotide analogues and (-)-baclofen. Br. J. Pharmacol., 97: 263–273.

    Article  PubMed  CAS  Google Scholar 

  • Dunlap, K., and Fischbach, G. D. 1981. Neurotransmitters decrease the calcium conductance activated by depolarization of embryonic sensory neurons. J. Physiol., 317: 519–535.

    PubMed  CAS  Google Scholar 

  • Dunlap, K., Holz, G. G., and Rane, S. G. 1987. G proteins as regulators of ion channel function. Trends Neurosci., 10: 241–244.

    Article  PubMed  CAS  Google Scholar 

  • Dutar, P., and Nicoll, R. A. 1988a. Pre-and postsynaptic GABAB receptors in the hippocampus have different pharmacological properties. Neuron, 1: 585–591.

    Article  PubMed  CAS  Google Scholar 

  • Dutar, P., and Nicoll, R. A. 1988b. A physiological role for GABAB receptors in the CNS. Nature, 332: 156158.

    Google Scholar 

  • Enna, S. J., and Karbon, E. W. 1987. Receptor regulation: Evidence for a relationship between phospholipid metabolism and neurotransmitter receptor-mediated cAMP formation in brain. Trends Pharmacol. Sci., 8: 21–24.

    Article  CAS  Google Scholar 

  • Gahwiler, B. H., and Brown, D. A. 1985. GABAB-receptor-activated K+ current in voltage-clamped CA3 pyramidal cells in hippocampal cultures. Proc. Natl. Acad. Sci. USA, 82: 1558–1562.

    Article  PubMed  CAS  Google Scholar 

  • Glossmann, H., and Striessnig, J. 1988. Structure and pharmacology of voltage-dependent calcium channels. ISI Atlas Sci.: Pharmacol., 2: 202–210.

    CAS  Google Scholar 

  • Hablitz, J. J., and Thalmann, R. H. 1987. Conductance changes underlying a late synaptic hyperpolarization in hippocampal CA3 neurons. J. Neurophysiol, 58: 160–179.

    PubMed  CAS  Google Scholar 

  • Harrison, N. L. 1990. On the presynaptic action of baclofen at inhibitory synapses between cultured rat hippocampal neurones. J. Physiol., 422: 433–446.

    PubMed  CAS  Google Scholar 

  • Holz, G. G., Rane, S. G., and Dunlap, K. 1986. GTP-binding proteins mediate transmitter inhibition of voltage-dependent calcium channels. Nature, 319: 670–672.

    Article  PubMed  CAS  Google Scholar 

  • Hunter, M., and Giebisch, G. 1987. Multi-barrelled K channels in renal tubules. Nature, 327: 522–524.

    Article  PubMed  CAS  Google Scholar 

  • Huston, E., Scott, R. H., and Dolphin, A. C. 1990. A comparison of the effect of calcium channel ligands and GABAB agonists and antagonists on transmitter release and somatic calcium channel currents in cultured neurons. Neuroscience, 38: 721–729.

    Article  PubMed  CAS  Google Scholar 

  • Hymel, L., Striessnig, J., Glossmann, H., and Schindler, H. 1988. Purified skeletal muscle 1,4-dihydropyridine receptor forms phosphorylation-dependent oligomeric calcium channels in planar bilayers. Proc. Natl. Acad. Sci. USA, 85: 4290–4294.

    Article  PubMed  CAS  Google Scholar 

  • Innis, R. B., Nestler, E. J., and Aghajanian, G. K. 1988. Evidence for G-protein mediation of serotonin and GABAB induced hyperpolarization of dorsal root raphe neurons. Brain Res., 459: 27–36.

    Article  PubMed  CAS  Google Scholar 

  • Inoue, M., Matsuo, T., and Ogata, N. 1985. Baclofen activates voltage-dependent and 4-aminopyridine sensitive K’ conductance in guinea-pig hippocampal pyramidal cells maintained in vitro. Br. J. Pharmacol., 84: 833–841.

    Article  CAS  Google Scholar 

  • Kerr, D. I. B., Ong, J., Prager, R. H., Gynther, B. D., and Curtis, D. R. 1987. Phaclofen; a peripheral and central baclofen antagonist. Brain Res., 405: 150–154.

    Article  PubMed  CAS  Google Scholar 

  • Kerr, D. I. B., Ong, J., Johnston, G. A. R., Abbenante, J., and Prager, R. H. 1988. 2-Hydroxy-saclofen: An improved antagonist at central and peripheral GABAB receptors. Neurosci. Lett., 92: 92–96.

    Google Scholar 

  • Krishnamurthy, V., Moore, J. B., and Chung, S. H. 1991. On hidden fractal model signal processing. Signal Processing, 24: 177–192.

    Article  Google Scholar 

  • Krouse, M. E., Schneider, G. T., and Gage, P. W. 1986. A large anion-selective channel has seven conductance levels. Nature, 319: 58–60.

    Article  PubMed  CAS  Google Scholar 

  • Lambert, N. A., Harrison, N. L., Kerr, D. I. B., Ong, J., Prager, R. H., and Teyler, T. J. 1989. Blockade of the late IPSP in rat CAI hippocampal neurons by 2-hydroxy-saclofen. Neurosci. Lett., 107: 125–128.

    Article  PubMed  CAS  Google Scholar 

  • Liebovitch, L. S., and Sullivan, J. M. 1987. Fractal analysis of a voltage-dependent potassium channel from cultured mouse hippocampal neurons. Biophys. J., 52: 979–988.

    Article  PubMed  CAS  Google Scholar 

  • Liebovitch, L. S., Fischbarg, J., and Koniarek, J. P. 1987. Ion channel kinetics: A model based on fractal scaling rather than multistate Markov processes. Math. Biosci., 84: 37–68.

    Article  Google Scholar 

  • Login, I. S., Pancrazio, J. J., and Kim, Y. I. 1990. Dopamine enhances a voltage-dependent transient K` current in the MMQ cell, a clonal pituitary line expressing functional D2 dopamine receptors. Brain Res., 506: 331–334.

    Article  PubMed  CAS  Google Scholar 

  • Miller, C. 1982. Open-state substructure of single chloride channels from Torpedo electroplax. Phil. Trans. R. Soc. Lond. B, 299: 401–411.

    Article  CAS  Google Scholar 

  • Newberry, N. R., and Nicoll, R. A. 1984. Direct hyperpolarizing action of baclofen on hippocampal pyramidal cells. Nature, 308: 450–452.

    Article  PubMed  CAS  Google Scholar 

  • Newberry, N. R., and Nicoll, R. A. 1985. Comparison of the action of baclofen with T-aminobutyric acid on rat hippocampal pyramidal cells in vitro. J. Physiol., 360: 161–185.

    CAS  Google Scholar 

  • Nicoll, R. A., Malenka, R. C., and Kauer, J. A. 1990. Functional comparison of neurotransmitter receptor subtypes in mammalian central nervous system. Physiol. Rev., 70: 513–551.

    PubMed  CAS  Google Scholar 

  • Olpe, H.-R., Karlsson, G., Pozza, M. F., Brugger, F., Steinmann, M., Van Reissan, H., Fagg, G., Hall, R. G., Froestl, W., and Bittiger, H. 1990. CGP 35348: A centrally active blocker of GABAB receptors. Eur. J. Pharmacol., 187: 27–38.

    Article  PubMed  CAS  Google Scholar 

  • Padjen, A. L., and Mitsoglou, G. M. 1990. Some characteristics of baclofen-evoked responses of primary afferents in frog spinal cord. Brain Res., 516: 201–207.

    Article  PubMed  CAS  Google Scholar 

  • Piomelli, D., and Greengard, P. 1990. Lipoxygenase metabolites of arachidonic acid in neuronal transmembrane signalling. Trends Pharmacol. Sci., 11: 367–373.

    Article  PubMed  CAS  Google Scholar 

  • Premkumar, L. S., Chung, S.-H., and Gage, P. W. I990a. GABA-induced potassium channels in cultured neurons. Proc. R. Soc. Lond. Biol., 241: 153–158.

    Google Scholar 

  • Premkumar, L. S., Gage, P. W., and Chung, S.-H. 1990b. Coupled potassium channels induced by arachidonic acid in cultured neurons. Proc. R. Soc. Lond. Biol., 242: 17–22.

    Article  CAS  Google Scholar 

  • Rabiner, L. R. 1989. A tutorial on hidden Markov models and selected applications in speech recognition. Proc. IEEE, 77: 257–285.

    Article  Google Scholar 

  • Rabiner, L. R., and Juang, B. H. 1986. An introduction to hidden Markov models. IEEE ASSP Mag., 3: 4–16.

    Article  Google Scholar 

  • Rudy, B. 1988. Diversity and ubiquity of K channels. Neuroscience, 25: 729–749.

    Article  PubMed  CAS  Google Scholar 

  • Saint, D. A., Thomas, T., and Gage, P. W. 1990. GABAB agonists modulate a transient potassium current in cultured mammalian hippocampal neurons. Neurosci. Leu., 118: 9–13.

    Article  CAS  Google Scholar 

  • Seabrook, G. R., Howson, W., and Lacey, M. G. 1990. Electrophysiological characterization of potent agonists and antagonists at pre-and postsynaptic GABAB receptors on neurones in rat brain slices. Br. J. Pharmacol., 101: 949–957.

    Article  PubMed  CAS  Google Scholar 

  • Sivilotti, L., and Nistri, A. 1990. GABA receptor mechanisms in the central nervous system. Prog. Neurobiol., 36: 35–92.

    Article  Google Scholar 

  • Stratton, K. R., Cole, A. J., Pritchett, J., Eccles, C. V., Worley, P. F., and Baraban, J. M. 1989. Intrahippocampal injection of pertussis toxin blocks adenosine suppression of synaptic responses. Brain Res., 494: 359–364.

    Article  PubMed  CAS  Google Scholar 

  • Thalmann, R. H. 1987. Pertussis toxin blocks a late inhibitory postsynaptic potential in hippocampal CA3 neurons. Neurosci. Lett., 82: 41–46.

    Article  PubMed  CAS  Google Scholar 

  • Thalmann, R. H. 1988. Evidence that guanosine triphosphate (GTP)-binding proteins control a synaptic response in brain: Effect of pertussis toxin and GTPTS on the late inhibitory postsynaptic potential of hippocampal CA3 neurons. J. Neurosci., 8: 4589–4602.

    PubMed  CAS  Google Scholar 

  • Titterington, D. M., Smith, A. F. M., and Makov, V. E. 1985. Statistical Analysis of Finite Mixture Distributions. Wiley, New York.

    Google Scholar 

  • Wang, M. Y., and Dun, N. J. 1990. Phaclofen-insensitive presynaptic inhibitory action of (±)-baclofen in neonatal rat motorneurones in vitro. Br. J. Pharmacol., 99: 413–421.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gage, P.W., Premkumar, L.S., Chung, Sh. (1993). Influence of GABA on Potassium Channels in Hippocampal Neurons. In: Glossmann, H., Striessnig, J. (eds) Methods in Pharmacology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-2239-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2239-0_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3232-7

  • Online ISBN: 978-1-4757-2239-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics