Skip to main content

Purification and Pharmacological Analysis of the Omega-Conotoxin GVIA Receptor from Rat Brain

  • Chapter
Methods in Pharmacology

Abstract

The excitation of neurons is coupled to the secretion of neurotransmitters by a discrete sequence of events involving the transduction of an electrical signal, in the form of the action potential propagating along the axon, into an increase in calcium at the nerve terminal (Sakmann, 1992). Numerous excellent reports address the importance of calcium as the intracellular chemical messenger and elucidate the specific steps in the release of neurotransmitters (Augustine et al., 1987; Smith and Augustine, 1988; Zimmermann, 1990; Llinas et al., 1992). These steps are outlined briefly as follows:

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe, T., and Saisu, H. 1987. Identification of the receptor for w-conotoxin in brain. J. Biol. Chem., 262: 9877–9882.

    PubMed  CAS  Google Scholar 

  • Adams, B. G., Tanabe, T., Mikami, A., Numa, S., and Beam, K. G. 1990. Intramembrane charge movement restored in dysgenic skeletal muscle by injection of dihydropyridine receptor cDNAs. Nature, 346: 569–572.

    Article  PubMed  CAS  Google Scholar 

  • Adams, M. E., Bindokas, V. P., Hasegawa, L., and Venema, V. J. 1990. w-Agatoxins: Novel calcium channel antagonists of two subtypes from funnel web spider (.9gelenopsis aperta) venom. J. Biol. Chem., 265: 861–867.

    Google Scholar 

  • Ahlijanian, M. K., Westenbroek, R. E., and Catterall. W. A. 1990. Subunit structure and localization of dihydropyridine-sensitive calcium channels in mammalian brain, spinal cord, and retina. Neuron, 4: 819–832.

    Article  PubMed  CAS  Google Scholar 

  • Ahlijanian, M. K., Striessnig, J., and Catterall, W. A. 1991. Phosphorylation of an a l -like subunit of an wconotoxin-sensitive brain calcium channel by cAMP-dependent protein kinase and protein kinase C. J. Biol. Chem., 266: 20192–20197.

    PubMed  CAS  Google Scholar 

  • Ahmad, S. N., and Miljanich, G. P. 1988. The calcium channel antagonist, w-conotoxin, and electric organ nerve terminals: Binding and inhibition of neurotransmitter release and calcium influx. Brain Res., 453: 247–256.

    Article  PubMed  CAS  Google Scholar 

  • Anderson, C., MacKinnon, R., Smith, C., and Miller, C. 1988. Charybdotoxin block of single Ca’-activated K’ channels. J. Gen. Physiol., 91: 317–333.

    Article  PubMed  CAS  Google Scholar 

  • Artalejo, C. R., Perlman, R. L., and Fox, A. P. 1992. w-Conotoxin GVIA blocks a Capcurrent in bovine chromaffin cells that is not of the “classic” N type. Neuron, 8: 85–95.

    Google Scholar 

  • Augustine, G. J., Charlton, M. P., and Smith, S. S. 1987. Calcium action in synaptic transmitter release. Annu. Rev. Neurosci., 10: 633–693.

    Article  PubMed  CAS  Google Scholar 

  • Bacski, B. J., and Friedman, P. A. 1990. Activation of latent Ca“ channels in renal epithelial cells by parathyroid hormone. Nature, 347: 388–391.

    Article  Google Scholar 

  • Barhanin, J. A., Schmid, A., and Lazdunski, M. 1988. Properties of structure and interaction of the receptor for w-conotoxin, a polypeptide active on Ca’ channels. Biochem. Biophys. Res. Commun., 150:1051–1062.

    Article  PubMed  CAS  Google Scholar 

  • Bean, B. P. 1984. Nitrendipine block of cardiac calcium channels: High affinity binding to the inactivated state. Proc. Natl. Acad. Sci. USA, 81: 6388–6392.

    Article  PubMed  CAS  Google Scholar 

  • Bean, B. P. 1989a. Classes of calcium channels in verebrate cells. Annu. Rev. Phvsiol., 51: 367–384.

    Article  CAS  Google Scholar 

  • Bean, B. P. 1989b. Neurotransmitter inhibition of neuronal calcium currents by changes in channel voltage-dependence. Nature, 340:153–156.

    Article  PubMed  CAS  Google Scholar 

  • Beech, D. J., Bernheim, L., and Hille, B. 1992. Pertussis toxin and voltage dependence distinguish multiple pathways modulating calcium channels of rat sympathetic neurons. Neuron, 8: 97–106.

    Article  PubMed  CAS  Google Scholar 

  • Bennett, M. K., Calakos, N., Kreiner, T., and Scheller, R. H. 1992a. Synaptic vesicle membrane proteins interact to form a multimeric complex. J. Cell Biol., 116: 761–775.

    Article  PubMed  CAS  Google Scholar 

  • Bennett, M. K., Calakos, N., and Scheller, R. H. 1992b. Syntaxin: A synaptic protein implicated in docking of synaptic vesicles at presynatic active zones. Science, 257: 255–259.

    Article  PubMed  CAS  Google Scholar 

  • Boland, L. M., Mintz, I. M., Adams, M. E., and Bean, B. P. 1992. Inhibition of N-type calcium channel in bullfrog sympathetic neurons by transmitters and toxins. Biophys. J., 61: A249.

    Google Scholar 

  • Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 116: 48–52.

    Google Scholar 

  • Brose, N., Petrenko, A. G., Südhof, T. C., and Jahn, R. 1992. Synaptotagmin: A calcium sensor on the synaptic vesicle surface. Science, 256: 1021–1025.

    Article  PubMed  CAS  Google Scholar 

  • Bruns, R. F., Lawson-Wendling, K., and Pugsley, T. A. 1983. A rapid filtration assay for soluble receptors using polyethylenimine-treated filters. Anal. Biochem., 132: 74–81.

    Article  PubMed  CAS  Google Scholar 

  • Campbell, K. P., Leung, A. T., and Sharp, A. H. 1988. The biochemistry and molecular biology of the dihydropyridine-sensitive calcium channel. Trends Neurosci., 11: 425–430.

    Article  PubMed  CAS  Google Scholar 

  • Carbone, E., and Lux, H. D. 1988. w-Conotoxin blockade distinguished Ca from Na permeable states in neuronal calcium channels. Flingers Arch.,413:14–22.

    Google Scholar 

  • Catterall, W. A. 1991. Functional subunit structure of voltage-gated calcium channels. Science, 253: 1499–1500.

    Article  PubMed  CAS  Google Scholar 

  • Chang, C. F., Gutierrez, L. M., Mundina-Weilenmann, E., and Hosey, M. M. 1991. Dihydropyridinesensitive calcium channel from skeletal muscle. II. Functional effects of differential phosphorylation of channel subunits. J. Biol. Chem., 266: 16395–16400.

    PubMed  CAS  Google Scholar 

  • Chersky, B. D., Sugimori, M., and Llinas, R. R. 1991. Properties of calcium channels isolated with spider toxin, FTX. Ann. N. Y. Acad. Sci., 635: 80–89.

    Article  Google Scholar 

  • Cohen, M. W., Jones, O. T., and Angelides, K. J. 1991. Distribution of Ca’ channels on frog motor nerve terminals revealed by fluorescent w-conotoxin. J. Neurosci., 11: 1032–1039.

    PubMed  CAS  Google Scholar 

  • Cooper, C. L., Vandaele, S., Barhanin, J., Fosset, M., Lazdunski, M., and Hosey, M. M. 1987. Purification and characterization of the dihydropyridine-sensitive voltage-dependent calcium channel from cardiac tissue. J. Biol. Chem., 262: 509–512.

    PubMed  CAS  Google Scholar 

  • Cox, D. H., and Dunlap, K. 1992. Pharmacological discrimination of N-type from L-type calcium current and its selective modulation by transmitters. J. Neurosci., 12: 906–914.

    Google Scholar 

  • Cruz, L. S., and Olivera, B. M. 1986. Calcium channel antagonists: w-Conotoxin GVIA defines a new high affinity site. J. Biol. Chem., 261: 6230–6233.

    PubMed  CAS  Google Scholar 

  • Cruz, L. J., Johnson, D. S., and Olivera, B. M. 1987. Characterization of the w-conotoxin target: Evidence for tissue-specific heterogeneity in calcium channel types. Biochemistry, 26: 820–824.

    Article  PubMed  CAS  Google Scholar 

  • Cuatrecasas, P. 1974. Membrane receptors. Annu. Rev. Biochem. 43: 169–214.

    Article  PubMed  CAS  Google Scholar 

  • Curtis, B. M., and Catterall, W. A. 1984. Purification of the calcium antagonist receptor of the voltagesensitive calcium channel from skeletal transverse tubules. Biochemistry, 23:21 13–21 17.

    Google Scholar 

  • De Jongh, K. S., Warner, C., and Catterall, W. A. 1990. Subunits of purified calcium channels. J. Biol.Chem., 265: 14738–14741.

    PubMed  Google Scholar 

  • Dolphin, A. C. 1990. G Protein modulation of calcium currents in neurons. Annu. Rev. Physiol., 52: 243–255.

    Article  PubMed  CAS  Google Scholar 

  • Doyle, V. M., Buhler, F. R., and Burgisser, E. 1984. Inappropriate correction for radioactive decay in fully iodinated adrenergic radioligands. Eur. J. Biochem., 99: 353–356.

    CAS  Google Scholar 

  • Dubel, S. J., Starr, T. V. B., Hell, J., Ahlijanian, M. K., Enyeart, J. J., Catterall, W. A., and Snutch, T. P. 1992. Molecular cloning of the alpha,-subunit of an omega-conotoxin-sensitive calcium channel. Proc. Natl. Acad. Sei. USA, 89: 5058–5062.

    Article  CAS  Google Scholar 

  • Ellis, S. B., Williams, M. E., Ways, N. R., Brenner, R., Sharp, A. H., Leung, A. T., Campbell, K. P., McKenna, E., Koch, W. J., Hui, A., Schwartz, A., and Harpold, M. M. 1988. Sequence and expression of mRNAs encoding the a, and a 2 subunits for a dihydropyridine-sensitive calcium channel. Science, 241: 1661–1664.

    Article  PubMed  CAS  Google Scholar 

  • Feigenbaum, P., Garcia, M. L., and Kaczorowski, G. J. 1988. Evidence for distinct sites coupled to high affinity w-conotoxin receptors in rat brain synaptic plasma membrane vesicles. Biochem. Biophys. Res. Commun., 154: 298–305.

    Article  PubMed  CAS  Google Scholar 

  • Fox, A. P., Nowycky, M. C., and Tsien, R. W. 1987. Kinetic and pharmacologic properties distinguishing three types of calcium currents in chick sensory neurons. J. Physiol. 394: 149–172.

    PubMed  CAS  Google Scholar 

  • Furth, A. J. 1980. Removing unbound detergent from hydrophobic proteins. Anal. Biochem. 109: 207–215.

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Calvo, M., Vazquez, J., Smith, M., Kaczorowski, G. J., and Garcia, M. L. 1991. Characterization of the solublized charybdotoxin receptor from bovine aortic smooth muscle. Biochemistry, 30: 11157–11164.

    Article  PubMed  CAS  Google Scholar 

  • Glossmann, H., and Striessnig, J. 1988. Structure and pharmacology of voltage-dependent calcium channels. 1S1 Atlas Sei.: Pharmacol., 2: 202–208.

    CAS  Google Scholar 

  • Glossmann, H., and Striessnig, J. 1990. Molecular properties of calcium channels. Rev. Physiol. Biochem. Pharmacol., 114:1–105.

    Article  PubMed  CAS  Google Scholar 

  • Glossmann, H., Striessnig, J., Hymel, L., and Schindler, H. 1988a. Purification and reconstitution of calcium channel drug-receptor sites. Ann. N. Y. Acad. Sei., 522: 150–161.

    Article  CAS  Google Scholar 

  • Glossmann, H., Striessnig, J., Hymel, L., Zernig, G., Knaus, H. G., and Schindler, H. 1988b. The structure of the calcium channel: Photoaffinity labelling and tissue distribution. In: The Calciurn Channel: Structure, Function and Implications, pp. 168–192. Ed. by Morad, M., Naylor, W., Kazda, S., and Schramm, M. Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • Gorbunoff, M. 1984. The interaction of proteins with hydroxyapatite. Anal. Biochem., 136: 425–432.

    Article  PubMed  CAS  Google Scholar 

  • Gornwall, A. G., Bardawill, C. J., and David, M. M. 1949. Determination of serum proteins by means of the biuret reaction. J. Biol. Chem., 177: 751–766.

    Google Scholar 

  • Gray, W. R., Olivera, B. M., and Cruz, L. J. 1988. Peptide toxins from venomous Conus snails. Annu. Rev. Biochem., 57: 665–700.

    Article  PubMed  CAS  Google Scholar 

  • Guggino, S. E., Wagner, J. A., Snowman, A. M., Hester, L. D., Sacktor, B., and Snyder, S. H. 1988. Phenylalkylamine-sensitive calcium channels in osteoblast-like osteosarcoma cells. J. Biol. Chem., 263: 10155–10161.

    PubMed  CAS  Google Scholar 

  • Guggino, S. E., Lajeunesse, D., Wagner, J. A., and Snyder, S. H. 1989. Bone remodeling signaled by a dihydropyridine-and PAA-sensitive calcium channel. Proc. Natl. Acad. Sei. USA, 86: 2957–2960.

    Article  CAS  Google Scholar 

  • Guillory, R. J., Rayner, M. D., and D’Arrigo, J. S. 1977. Covalent labeling of the tetrodotoxin receptor in excitable membranes. Science, 196: 883–885.

    Article  PubMed  CAS  Google Scholar 

  • Gundersen, C. B., and Umbach, J. A. 1992. Suppression cloning of the cDNA for a candidate subunit of a presynaptic calcium channel. Neuron, 9: 527–537.

    Article  PubMed  CAS  Google Scholar 

  • Halpern, A., and Stocklin, G. 1977. Chemical and biological consequences of ß-decay. Radial. Environ. Biophys., 87: 167–183.

    Article  Google Scholar 

  • Hamilton, S. L., Codina, J., Hawkes. M. J., Yatani, A., Sawada, T., Strickland, F. M., Froehner, S. C., Speigel, A. M., Toro, L., Stefani, E., Birnbaumer, L., and Brown. A. M. 1991. Evidence for direct interaction of Gsa with the Ca’ channel of skeletal muscle. J. Biol. Chem., 266: 19528–19535.

    CAS  Google Scholar 

  • Hayakawa, N., Morita, T., Yamaguchi, T., Mitsui, H., Mori. K. J., Saisu, H., and Abe, T. 1990. The high affinity receptor for w-conotoxin represents calcium channels different from those sensitive to dihydropyridines in mammalian brain. Biochem. Biophvs. Res. Commun., 173: 483–490.

    CAS  Google Scholar 

  • Hess, P. 1990. Calcium channels in vertebrate cells. Annu. Rev. Neurosci., 13: 337–356.

    Article  PubMed  CAS  Google Scholar 

  • Hess, P., Landsman, B., and Tsien, R. W. 1986. Calcium channel selectivity for divalent and monovalent cations. Voltage and concentration dependence of single channel current in guinea pig ventricular heart cells. J. Gen. Phvsiol., 88: 293–319.

    Article  CAS  Google Scholar 

  • Heuser, J. E.. Reese, T. S., and Landis, D. M. 1974. Functional changes in frog neuromuscular junction studied with freeze-fracture. J. Neurocetol., 3: 109–131.

    CAS  Google Scholar 

  • Hille, B. 1975. The receptor for tetrodotoxin and saxitoxin: A structural hypothesis. Biophps. J., 15: 615–619.

    Article  CAS  Google Scholar 

  • Hirning, L. D., Fox, A. P., McClesky, E. W., Olivera, B. M., Thayer. S. A., Miller, R. J., and Tsien, R. W. 1988. Dominant role of N-type Ca’-’ channels in evoked release of norepinephrine from sympathetic neurons. Science, 239: 57–61.

    CAS  Google Scholar 

  • Hofmann, F., Nastainczyk. W., Rohrkasten, A., Schneider, T., and Seiber, M. 1987. Regulation of the L-type calcium channel. Trends Pharmacol. Sei., 8: 393–398.

    Article  CAS  Google Scholar 

  • Home, W. A., Hawrot, E., and Tsien, R. W. 1991. w-Conotoxin GVIA receptors of Discoprge electric organ. J. Biol. Chem., 266: 13719–13725.

    Google Scholar 

  • Hui, A., Ellinor, P. T., Krizanova, O., Wang. J.-J., Diebold, R. J., and Schwartz, A. 1991. Molecular cloning of multiple subtypes of a novel rat brain isoform of the 0 1 subnit of the voltage-dependent calcium channel. Neuron, 7: 35–44.

    CAS  Google Scholar 

  • Jahn, H., Nastainczyk, W., Rohrkasten, A., Schneider, T.. and Hofmann, F. 1988. Site-specific phosphorylation of the purified receptor for calcium channel blockers by cAMP- and cGMP-dependent protein kinases, protein kinase C, calmodulin-dependent protein kinase II and casein kinase I1. Eur. J. Biochem., 178: 535–542.

    Article  PubMed  CAS  Google Scholar 

  • Jarabak, J., Seeds, A. E., and Talalay, P. 1966. Cold inactivation of 1713-hydroxysteroid dehydrogenase. Biochemistry, 5: 1275–1279.

    Article  Google Scholar 

  • Jay, S. D., Ellis, S. B., McCue, A. F., Williams, M. E., Vednick, T. S., Harpold, M. M., and Campbell, K. P. 1990. Primary structure of the y subunit of the dihydropyridine-sensitive calcium channel from skeletal muscle. Science, 248: 490–492.

    Article  PubMed  CAS  Google Scholar 

  • Jay, S. D., Sharp, A. H., Kahl, S. D., Vedvick, T. S., Harpold, M. M., and Campbell, K. P. 1991. Structural characterization of the dihydropyridine-sensitive calcium channel o2-subunit and the associated t peptides. J. Biol. Chem., 266: 3287–3293.

    PubMed  CAS  Google Scholar 

  • Jones, O. T., Kunze, D. L., and Angelides, K. J. 1989. Localization and mobility of w-conotoxin-sensitive Ca’ channels in hippocampal CAI neurons. Science, 244: 1189–1193.

    Article  PubMed  CAS  Google Scholar 

  • Karlin, A. 1974. The acetylcholine receptor: A progress report. Ligie Sei., 14: 1385–1415.

    Article  CAS  Google Scholar 

  • Kasai. H. 1991. Tonic inhibition and rebound facilitation of a neuronal calcium channel by a GTP-binding protein. Proc. Natl. Acad. Sci. USA, 88: 8855–8859.

    Article  PubMed  CAS  Google Scholar 

  • Katz, B., and Miledi. R. 1965. The measurement of synaptic delay, and the time course of acetylcholine release at the neuromuscular junction. Proc. R. Soc. Lond. Biol., 161: 483–495.

    Article  PubMed  CAS  Google Scholar 

  • Kerr. L. M., Filloux, F., Olivera, B. M., Jackson, H., and Wamsley, J. K. 1988. Autoradiographie localization of calcium channels with [’2SI]w-conotoxin in rat brains. Eur. J. Pharmacol., 146: 181–183.

    Article  PubMed  CAS  Google Scholar 

  • Kim, H.-L., Kim, H., Lee. P., King, R. G., and Chin, H. 1992. Rat brain expresses an alternatively spliced form of the dihydropyridine-sensitive L-type calcium channel 0 2 subunit. Proc. Natl. Acad. Sci. USA, 89: 3251–3255.

    Article  PubMed  CAS  Google Scholar 

  • Knaus, H.-G., Striessnig, J., Koza, A., and Glossmann, H. 1987. Neurotoxic aminoglycoside antibiotics are potent inhibitors of [’251]-omega-conotoxin GVIA binding to guinea pig cerebral membranes. NaunvnSchmiedeberg’s Arch. Pharmacol., 336: 583–586.

    CAS  Google Scholar 

  • Knaus, H.-G., Scheffauer, F., Romanin, C., Schindler, H.-G., and Glossmann, H. 1990. Heparin binds with high affinity to voltage-dependent L-type Ca’ channels. J. Biol. Chem., 265: 11156–11166.

    Google Scholar 

  • Knaus, H.-G., Moshammer, T., Friedrich, K., Kang, H. C., Haugland, R. P., and Glossmann, H. 1992a. In vivo labeling of L-type Ca’ channels by fluorescent dihydropyridines: Evidence for a functional, extracellular heparin-binding site. Proc. Natl. Acad. Sci. USA, 89: 3586–3590.

    CAS  Google Scholar 

  • Knaus, P., Marqueze-Pouey, B., Schere, H., and Betz, H. 1990. Synaptoporin, a novel putative channel protein of synaptic vesicles. Neuron, 5: 453–462.

    Article  PubMed  CAS  Google Scholar 

  • Lai, Y., Seagar, M. J., Takahashi, M., and Catterall, W. A. 1990. Cyclic AMP-dependent phosphorylation of two size forms of a, subunits of L-type calcium channel in rat skeletal muscle cells. J. Biol. Chem., 265: 20839–20848.

    PubMed  CAS  Google Scholar 

  • Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of head of bacteriophage T4. Nature, 227: 680–685.

    Article  PubMed  CAS  Google Scholar 

  • Leung, A. T., Imagawa, T., and Campbell, K. P. 1987. Structural characterization of the 1,4-dihydropyridine receptor of the voltage-dependent Ca’ channel from rabbit skeletal muscle. J. Biol. Chem., 262: 7943–7946.

    PubMed  CAS  Google Scholar 

  • Leveque, C., Hoshino, T., David, P., Shoni-Kasai, Y., Leys, K., Omori, A., Lang, B., El Far, O., Sato, K., Martin-Moutot, N., Newsom-Davis, J., Takahashi, M., and Seagar, M. J. 1992. The synaptic vesicle protein synaptotagmin associates with calcium channels and is a putative Lambert-Eaton myasthenic syndromé antigen. Proc. Natl. Acad. Sei. USA, 89: 3625–3629.

    Article  CAS  Google Scholar 

  • Lin, J.-W., Rudy, B., and Llinas, R. 1990. Funnel-web spider venom and a toxin fraction block calcium channel expressed from rat brain mRNA in Xenopus oocytes. Proc. Natl. Acad. Sci. USA, 87: 4538–4542.

    Article  PubMed  CAS  Google Scholar 

  • Llinas, R., Sugimori, M., Lin, J.-W., and Chersky, B. 1989. Blocking and isolation of a calcium channel from neurons in mammals and cephalopods utilizing a toxin fraction (FIX) from funnel-web spider poison. Proc. Natl. Acad. Sci. USA, 86: 1689–1693.

    Article  PubMed  CAS  Google Scholar 

  • Llinas, R., Sugimori, M., and Silver, R. B. 1992. Microdomains of high calcium concentration in a presynaptic terminal. Science, 256: 677–679.

    Article  PubMed  CAS  Google Scholar 

  • Loring, R. H., Jones, S. W., Matthews-Bellinger, J., and Salpeter, M. 1982. ‘251-a-bungarotoxin: Effect of radiodecomposition on specific activity. J. Biol. Chem., 257: 1418–1423.

    Google Scholar 

  • MacKinnon, R., and Miller, C. 1989. Mutant potassium channels with altered binding of charybdotoxin, a pore-blocking inhibitor. Science, 245: 1382–1385.

    Article  PubMed  CAS  Google Scholar 

  • Maeda, N., Wada, K., Yuzaki, M., and Mikoshiba, K. 1989. Autoradiographic visualization of a calcium channel antagonist, [12511w-conotoxin GVIA, binding site in the brains of normal and cerebellar mutant mice (pcd and weaver). Brain Res., 489: 21–30.

    Article  PubMed  CAS  Google Scholar 

  • Marqueze, B., Martin-Moutot, N., Leveque, C., and Courand, F. 1988. Characterization of the w-conotoxin- binding molecule in rat brain synaptosomes and cultured neurons. Mol. Pharmacol., 34: 87–90.

    PubMed  CAS  Google Scholar 

  • McCleskey, E. W., Fox, A. P., Feldman, D. H., Cruz, L. J., Olivera, B. M., Tsien, R. W., and Yoshikami, D. 1987. w-Conotoxin: Direct and persistent blockade of specific types of calcium channels in neurons and not muscle. Proc. Natl. Acad. Sci. USA, 84: 4327–4331.

    Google Scholar 

  • McEnery, M. W., Buhle, E. L., Aebi, U., and Pedersen, P. L. 1984. Proton ATPase of rat liver mitochondria. J. Biol. Chem., 249: 4642–4651.

    Google Scholar 

  • McEnery, M. W., Snowman, A. M., Sharp, A. H., and Snyder, S. H. 1989. Conotoxin receptor of rat brain synaptosomes: Partial purification and characterization. Biophys. J., 57: 516a.

    Google Scholar 

  • McEnery, M. W., Snowman, A. M., Sharp, A. H., Adams, M. E., and Snyder, S. H. 1991a. Purified wconotoxin GVIA receptor of rat brain resembles a dihydropyridine-sensitive L-type calcium channel. Proc. Natl. Acad. Sci. USA, 88: 11095–11099.

    Article  PubMed  CAS  Google Scholar 

  • McEnery, M. W., Snowman, A. M., and Snyder, S. H. 199 lb. Evidence for subtypes of the w-conotoxin receptor: Identification of the properties intrinsic to the high-affinity receptor. Ann. N. Y. Acad. Sci. 635: 435–438.

    Google Scholar 

  • McEnery, M. W., Snowman, A. M., Sharp, A. H., Venema, V. J., Adams, M. E., and Snyder, S. H. 1992. Purification of the omega-conotoxin GVIA receptor from rat forebrain: Structural similarity to the dihydropyridine-sensitive L-type calcium channel. Biophys. J., 61: A419.

    Google Scholar 

  • McEnery, M. W.. Snowman, A. M., Seagar, M. J., Copeland, T., and Takahashi, M. 1993. Immunological characterization of the proteins associated with the purified omega-conotoxin GVIA receptor. Ann. N. Y. Acad. Sci.,in press.

    Google Scholar 

  • Mikami, A., Imoto, K., Tanabe, T., Niidome, T., Mori, Y., Takeshima, H., Narumiya, S., and Numa, S. 1989. Primary structure and functional expression of the cardiac dihydropyridine-sensitive calcium channel. Nature, 340: 230–233.

    Article  PubMed  CAS  Google Scholar 

  • Miljanich, G., Gohil, K., Kristipati, R., Woppman, A., Bowersox, S., Tarczy-Hornoch, K., Nadasdi, L., Fox, J., Bell, J., and Ramachandran, J. 1991. Novel w-conopeptides reveal calcium channel subtypes: Binding. Soc. Neurosci. Abstr., 17: 1161.

    Google Scholar 

  • Miller, C. 1990. Diffusion-controlled binding of a peptide neurotoxin to its K’ channel receptor. Biochemistry, 29: 5320–5325.

    Article  PubMed  CAS  Google Scholar 

  • Miller, R. J. 1987. Multiple calcium channels and neuronal function. Science, 235:46–52. Miller, R. J. 1992. Voltage-sensitive Cap’ channels. J. Biol. Chem., 267: 1403–1406.

    Google Scholar 

  • Mintz. I., Venema, V. J., Adams, M. E., and Bean, B. P. 1991. Inhibition of N- and L-type Ca’ channels by spider venom toxin w-AgalIIA. Proc. Natl. Acad. Sci. USA, 88: 6628–6631.

    Article  PubMed  CAS  Google Scholar 

  • Mintz. I. M.. Venema, V. J., Swiderek, K. M., Lee, T. D., Bean, B. P., and Adams, M. E. 1992. P-type calcium channel blocked by the spider toxin w-AgaIVA. Nature, 355: 827–829.

    Google Scholar 

  • Mori, Y., Friedrich, T., Kim, M.-S., Mikami, A., Nakai, J., Ruth, P., Bosse, E., Hofmann, F., Flockerzi, V., Furuichi, T., Mikoshiba, K., Imoto, K., Tanabe, T., and Numa, S. 1991. Primary structure and functional expression from complementary DNA of a brain calcium channel. Nature, 350: 398–402.

    Article  PubMed  CAS  Google Scholar 

  • Morita, T., Mori, H., Sakimura, K., Mishina, M., Sekine, Y., Tsugita, A., Odani, S., Horikawa, H. P. M., Saisu, H., and Abe, T. 1991. Identification of a 35 kDa protein associated with CTXR. Biochim. Biophys. Res. Commun., 181: 59–66.

    Article  Google Scholar 

  • Müller. K. 1981. Structural dimorphism of bile salts/lecithin mixed micelles. Biochemistry, 20: 414–420.

    Google Scholar 

  • Nakayama, H., Taki, M., Striessnig, J., Glossmann, H., Catterall, W. A., and Kanaoka, Y. 1991. Identification of 1,4-dihydropyridine binding regions within the a, subunit of skeletal muscle Ca’ chanels by photoaffinity labeling with diazepine. Proc. Natl. Acad. Sei. USA, 88: 9203–9207.

    Article  CAS  Google Scholar 

  • Narahashi, T. 1974. Chemicals as tools in the study of excitable membranes. Physiol. Rev., 54: 813–889.

    Article  PubMed  CAS  Google Scholar 

  • Nastainczyk, W., Röhrkasten, A., Seiber, M., Rudolph, C., Schächtele, C., Marme, D., and Hofmann, F. 1987. Phosphorylation of the purified receptor for calcium channel blockers by cAMP kinase and protein kinase C. Eur. J. Biochem., 169: 137–142.

    Article  PubMed  CAS  Google Scholar 

  • Noda, M., Suzuki, H., Numa, S., and Stühmer, W. 1989. A single point mutation confers tetrodotoxin and saxitoxin insensitivity on the sodium channel II. FEBS Lett.. 259: 213–216.

    CAS  Google Scholar 

  • Nowycky, M. C., Fox, A. P., and Tsien, R. W. 1985. Three types of neuronal channels with difference calcium sensitivity. Nature, 316: 440–443.

    Article  PubMed  CAS  Google Scholar 

  • Nunoki, K., Florio, V., and Catterall, W. A. 1989. Activation of purified calcium channels by stoichiometric protein phosphorylation. Proc. Natl. Acad. Sei. USA, 86: 6816–6820.

    Article  CAS  Google Scholar 

  • Olivera, B. M., McIntosh, J. M., Cruz, L. J., Luque, F. A., and Gray, W. R. 1984. Purification and sequence of a presynatic peptide from Conus geographus venom. Biochemistry, 23: 5087–5090.

    Article  PubMed  CAS  Google Scholar 

  • Olivera, B. M., Cruz, L. J., de Santos, V., LeCheminant, G. W., Griffin, D., Zeikus, R., McIntosh. J. M., Galyean, R., Vargas, J., Gray, W. R., and Rivier, J. 1987. Neuronal calcium channel antagonists. Discrimination between calcium channel subtypes using w-conotoxin from Conus magus venom. Biochemistry, 26: 2086–2090.

    CAS  Google Scholar 

  • Olivera, B. M., Rivier, J., Clark, C., Ramilo, C. A., Corpuz, G. P., Abogadie, F. C., Mena, E. E., Woodward, S. R., Hillyard, D. R., and Cruz, L. J. 1990. Diversity of Conus neuropeptides. Science, 249: 257–263.

    Article  PubMed  CAS  Google Scholar 

  • Olivera, B. M., Rivier, J., Scott, J. K., Hillyard, D. R., and Cruz, L. J. 199la. Conotoxins. J. Biol. Chem., 266: 22067–22070.

    Google Scholar 

  • Olivera, B. M., Imperial, J. S., Cruz, L. J., Binbokas, V. P., Venema, V. J., and Adams, M. E. 1991b. Calcium channel-targeted polypeptide toxins. Ann. N. Y. Acad. Sei., 635: 114–122.

    Article  CAS  Google Scholar 

  • Oyama, Y., Tsuda, Y., Sakakibaba, S., and Akaike, N. 1987. Synthetic w-conotoxin: A potent calcium blocking neurotoxin. Brain Res., 424: 58–64.

    Article  PubMed  CAS  Google Scholar 

  • Perez-Reyes, E., Castellano, A., Kim, H. S., Bertrand, P., Baggstrom, E., Lacerda, A. E.. Wei, X., and Birnbaumer, L. 1992. Cloning an expression of a cardiac/brain beta subunit of the L-type calcium channel. J. Biol. Chem., 267: 1792–1797.

    CAS  Google Scholar 

  • Petrenko, A. G., Perin, M. S., Davletov, B. A.. Usharyov, Y. A., Geppert, M., and Sudhof, T. C. 1991. Binding of synaptotagmin to the a-latrotoxin receptor implicated both in synaptic vesicle exocytosis. Nature, 353: 65–68.

    CAS  Google Scholar 

  • Plummer, M. R., and Hess, P. 1991. Reversible uncoupling of inactivation in N-type calcium channels. Nature, 351: 657–659.

    Article  PubMed  CAS  Google Scholar 

  • Plummer, M. R., Logothetic, D. E., and Hesse, P. 1989. Elemental properties and pharmacological sensitivities of calcium channels in mammalian neurons. Neuron, 2: 1453–1463.

    Article  PubMed  CAS  Google Scholar 

  • Plummer, M. R., Rittenhouse, A., Kanevsky, M., and Hesse, P. 1991. Neurotransmitter modulation of calcium channels in rat sympathetic neurons. J. Neurosci., 11: 2339–2348.

    PubMed  CAS  Google Scholar 

  • Pragnell, M., Sakamoto, J., Jay, S. D., and Campbell, K. P. 1991. Cloning and tissue-specific expression of the brain calcium channel 0-subunit. FEBS Leu., 291: 253–258.

    Article  CAS  Google Scholar 

  • Pumplin, D. W., Reese, T. S., and Llinas, R. 1981. Are the presynaptic membrane particles the the calcium channels? Proc. Natl. Acad. Sci. USA, 78: 7210–7213.

    Article  PubMed  CAS  Google Scholar 

  • Racker, E. 1977. Perspectives and limitations of resolution-reconstitution experiments. J. Supramol. Struct., 6: 215–228.

    Article  PubMed  CAS  Google Scholar 

  • Racker, E., Violand, B., O’Neal, S., Alfonzo, M., and Telford, J. 1979. Reconstitution, a way of biochemical research; some new approaches to membrane-bound enzymes. Arch. Biochem. Biophis., 198: 470–477.

    Article  CAS  Google Scholar 

  • Regulla, S., Schneider, T., Nastainczyk, W., Meyer, H. E., and Hofmann, F. 1991. Identification of the site of interaction of the dihydropyridine channel blockers nitrendipine and azidopine with the calcium channel alpha, subunit. EMBO J., 10: 45–49.

    PubMed  CAS  Google Scholar 

  • Rehm, H., and Lazdunski, M. 1988. Purification and subunit structure of a putative Ki-channel protein indeifiied by its binding properties for dendrotoxin I. Proc. Natl. Acad. Sci. USA, 85: 4919–4923.

    Article  PubMed  CAS  Google Scholar 

  • Reynolds, I. J., Wagner, J. A., Snyder, S. H., Thayer, S. A.. Olivera, B. M., and Miller, R. J. 1986. Brain voltage-sensitive calcium channel subtypes differentiated by w-conotoxin fraction GVIA. Proc. Natl. Acad. Sci. USA, 83: 8804–8807.

    CAS  Google Scholar 

  • Rios, E., and Brum, G. 1987. Involvement of dihydropyridine receptors in excitation-contraction coupling in skeletal muscle. Nature, 325: 717–720.

    Article  PubMed  CAS  Google Scholar 

  • Rios, E., and Pizarro, G. 1991. Voltage sensor of excitation-contraction coupling in skeletal muscle. Phys. Rev., 71: 849–908.

    CAS  Google Scholar 

  • Rivier, J.. Gaylean, R., Gray, W. R., Azimi-Zonooz, A., McIntosh, J. M., Cruz, L. J., and Olivera, B. M. 1987. Neuronal calcium channel inhibitors. J. Biol. Chem., 262: 1194–1198.

    CAS  Google Scholar 

  • Rivnay, B., Fox, J., Newcomb, R., Gohil, F., Cain. S., Palma, A., Adriaenssens, P., Nadasdi, L., Miljanich, G., Bell, J., and Ramachandran, J. 1991. Novel w-conopeptides reveal calcium channel subtypes: Transmitter release. Soc. Neurosci. Abstr., 17: 1161.

    Google Scholar 

  • Rosenberg, R. L., Isaacson, J. S., and Tsien, R. W. 1989. Solubilization, partial purification, and properties of w-conotoxin receptors associated with voltage-dependent calcium channel from rat brain synaptosomes. Ann. N. Y. Acad. Sci., 560: 39–52.

    Article  PubMed  CAS  Google Scholar 

  • Ruth, P., Röhrkasten, A., Biel, M., Bosse, E., Meyer, H. E., and Hofmann, F. 1989. Primary sequence of the 13 subunit of the DHP-sensitive calcium channel from skeletal muscle. Science, 245: 1115–1118.

    Article  PubMed  CAS  Google Scholar 

  • Saisu, H., Ibaraki, K., Yamagushi, T., Sekine, Y., and Abe, T. 1991. Monoclonal antibodies immunoprecipitating w-conotoxin-sensitive calcium channel molecules recognize two novel proteins localized in the nervous system. Biochem. Biophys. Res. Commun., 181: 59–66.

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto, J., and Campbell. K. P. 199la. A monoclonal antibody to the ß subunit of the skeletal muscle dihydropyridine receptor immunoprecipitates the brain w-conotoxin GVIA receptor. J. Biol. Chem., 266: 18914–18919.

    Google Scholar 

  • Sakamoto, J., and Campbell, K. P. 199 lb. Isolation and biochemical characterization of the rabbit brain wconotoxin GVIA receptor. Physiologist, 34: 109.

    Google Scholar 

  • Sakmann, B. 1992. Elemental steps in synaptic transmission revealed by currents through single ion channels. Neuron, 8: 613–629.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt. J. 1984. The impact of radiodecay on’25ITyr-54-a-bungarotoxin. J. Biol. Chem., 259: 1160–1166.

    PubMed  CAS  Google Scholar 

  • Schultz, G., Rosenthal, W., Hescheler, J., and Trautwein, W. 1990. Role of G proteins in calcium channel modulation. Annu. Rev. Physiol., 52: 275–292.

    Article  PubMed  CAS  Google Scholar 

  • Scott, R. H., Dolphin, A. C., Bindokas, V. P., and Adams, M. E. 1990. Inhibition of neuronal Cat’ channel current by the funnel web spider toxin w-AgaIA. Mol. Pharmacol., 38: 711–718.

    PubMed  CAS  Google Scholar 

  • Segel, I. H. 1975. Enrpme Kinetics: Behavior and Analysis of Rapid Equilibrium and Steady-State En_vme Systems. Wiley, New York.

    Google Scholar 

  • Seino, S., Chen, L., Seino, M., Blondell, O., Takeda, J., Johnson, J. H., and Bell, G. I. 1992. Cloning of the a, subunit of a voltage-dependent calcium channel expressed in pancreatic ß cells. Proc. Natl. Acad. Sei. USA, 89: 584–588.

    Article  CAS  Google Scholar 

  • Sharp, A. H., and Campbell, K. P. 1989. Characterization of the I,4-dihydropyridine receptor using subunit specific polyclonal antibodies. J. Biol. Chem., 264: 2816–2825.

    PubMed  CAS  Google Scholar 

  • Sharp, A. H., Imagawa, T., Leung, A. T., and Campbell, K. P. 1987. Identification and characterization of the dihydropyridine-binding subunit of the skeletal muscle dihydropyridine receptor. J. Biol. Chem., 262: 12309–12315.

    PubMed  CAS  Google Scholar 

  • Sieber, M., Nastinczyk, W., Zubor, V., Wernet, W., and Hofmann, F. 1987. The 165-kDa peptide of the purified skeletal muscle dihydropyride receptor contains the known regulatory sites of the calcium channel. Eur. J. Biochem., 167: 117–122.

    Article  PubMed  CAS  Google Scholar 

  • Sikorski, A. F., and Goodman, S. R. 1991. The effect of synapsin 1 phosphorylation upon binding of synaptic vesicle to spectrin. Brain Res., 27: 195–198.

    CAS  Google Scholar 

  • Singer, D., Beil, M., Lotan, 1., Flockerzi, V., Hofmann, F., and Dascal, N. 1991. The roles of the subunits in the function of the calcium channel. Science, 253: 1553–1557.

    CAS  Google Scholar 

  • Smith, S. J., and Augustine, G. J. 1988. Calcium ions, active zones, and synaptic transmitter release. Trends Neurosci., 11: 458–464.

    Article  PubMed  CAS  Google Scholar 

  • Snutch, T. P., Leonard, J. P.. Gilbert, M. M., Lester, H. A., and Davidson, N. 1990. Rat brain expreses a heterologous family of calcium channels. Proc. Natl. Acad. Sci. USA, 87: 3391–3395.

    Article  CAS  Google Scholar 

  • Snutch, T. P., Tomlinson, W. J., Leonard, J. P., and Gilbert, M. M. 1991. Distinct calcium channels are generated by alternate splicing and are differentially expressed in the mammalian CNS. Neuron, 7: 45–57.

    Article  PubMed  CAS  Google Scholar 

  • Snyder, 1984. Drug and neurotransmitter receptors in the brain. Science, 224: 23–31.

    Article  Google Scholar 

  • Stanley, E. F., and Cox, C. 1991. Calcium channels in the presynaptic nerve terminal of the chick ciliary ganglion giant synapse. Ann. N. Y. Acad. Sei., 635: 70–79.

    Article  CAS  Google Scholar 

  • Starr, T. V. B., Prystay, W., and Snutch, T. P. 1991. Primary structure of a calcium channel that is highly expressed in rat cerebellum. Proc. Natl. Acad. Sci. USA, 88: 5621–5625.

    Article  PubMed  CAS  Google Scholar 

  • Striessnig, J., Knaus, H.-G., Gabner, M., Moosburger, K., Seitz, W., Lietz, H., and Glossmann, H. 1987. Photoaffinity labeling of the phenylalkylamine receptor of the skeletal muscle transverse-tubule calcium channel. FEBS Lett., 212: 247–253.

    Article  PubMed  CAS  Google Scholar 

  • Striessnig, J., Glossmann, H., and Catterall, W. A. I990a. Identification of a phenylalkylamine binding region within the a, subunit of skeletal muscle Ca’ channels. Proc. Natl. Acad. Sci. USA, 87: 9108–9112.

    Google Scholar 

  • Striessnig, J., Scheffauer, F., Mitterdorfer, J., Schirmer, M., and Glossmann, H. 1990b. Identification of the benzothiazepine-binding polypeptide of skeletal muscle calcium channels with (+)-cis-azidodiltiazem and anti-ligand antibodies. J. Biol. Chem., 265: 363–370.

    PubMed  CAS  Google Scholar 

  • Striessnig, J., Murphy, B. J., and Catterall, W. A. 1991. Dihydropyridine receptor of L-type Ca“ channels: Identification of binding domains for [3H](+)-PN200–110 and [3H]azidopine with the a, subunit. Proc. Natl. Acad. Sei. USA, 88: 10769–10773.

    Article  CAS  Google Scholar 

  • Stumpo, R. J., Pullan, L. M., and Salama, A. I. 1991. The inhibition of [125I]w-conotoxin GVIA binding to neuronal membranes by neomycin may be mediated by a GTP-binding protein. Mol. Pharmacol., 206: 155–158.

    CAS  Google Scholar 

  • Suszkiw, J. B., Murawsky, M. M., and Fortner, R. C. 1987. Heterogeneity of presynaptic calcium channels revealed by species differences in the sensitivity to synaptosomal 45Ca entry to w-conotoxin. Biochem. Biophys. Res. Commun., 145: 1283–1286.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi, M., Seagar, M. J., Jones, J. F., Reber, B. F. X., and Catterall, W. A. 1987. Subunit structure of dihydropyridine-sensitive calcium channels from skeletal muscle. Proc. Natl. Acad. Sci. USA, 84: 5478–5482.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi, M., Arimatsu, Y., Fujita, S., Fujimoto, Y., Kondo, S., Hama, T., and Miyamoto, E. 1991. Protein kinase C and Ca3+/calmodulin-dependent protein kinase II phosphorylate a novel 58-kDa protein in synaptic vesicles. Brain Res., 551: 279–292.

    Article  PubMed  CAS  Google Scholar 

  • Tanabe, T., Takeshima, H., Mikami, A., Flockerzi, V.. Takahashi, H., Kangawa, K., Kojima, M., Matsuo, H., Hirose. T., and Numa, S. 1987. Primary structure of the receptor for calcium channel blockers from skeletal muscle. Nature, 328: 313–328.

    CAS  Google Scholar 

  • Tanabe, T., Beam, K. G., Adams, B. A., Niidome, T., and Numa, S. 1990. Regions of the skeletal muscle dihydropyridine receptor critical for excitation-contraction coupling. Nature, 346: 567–569.

    Article  PubMed  CAS  Google Scholar 

  • Tarelli, F. T., Passafaro, M., Clementi, F., and Sher, E. 1991. Presynaptic localization of w-conotoxin-sensitive calcium channel at the frog neuromuscular junction. Brain Res., 547:331–334.

    Google Scholar 

  • Taussig, R., Sanchez, S., Rifo, M., Gilman, A. G., and Belardetti, F. 1992. Inhibition of the w-conotoxin-sensitive calcium current by distinct G-proteins. Neuron, 8:799–809.

    Google Scholar 

  • Terlau, H., Heinemann, S. H., Stuhmer, W., Pusch, M., Conti, F., Imoto, K., and Numa, S. 1991. Mapping the site of block by tetrodotoxin and saxitoxin of sodium channel II. FEBS Lett., 293: 93–96.

    Article  PubMed  CAS  Google Scholar 

  • Terman, B. I., Riek, R. P., Grodski, A., Hess, H.-J., and Graham, R. M. 1990. Identification and structural characterization of a,-adrenergic receptor subtypes. Mol. Pharmacol., 37:526–534.

    Google Scholar 

  • Thomas, L., Hartung, K., Langosch, D., Rehm, H., Bamber, E., Franke, W. W., and Betz, H. 1988. Identification of synaptophysin as a hexameric channel protein of the synaptic vesicle membrane. Science, 242: 1050–1053.

    Article  PubMed  CAS  Google Scholar 

  • Tsien, R. W., Lipscombe, D., Madison, D. V., Bloy, K. R., and Fox, A. P. 1988. Multiple types of neuronal calcium channels and their selective modulation. Trends in Neurosci., 11: 431–438.

    Article  CAS  Google Scholar 

  • Tsien, R. W., Ellinor, P. T., and Home, W. A. 1991. Molecular diversity of voltage-dependent Cap` channels. Trends Neurosci., 12: 349–354.

    CAS  Google Scholar 

  • Tsubokawa, M., Kiraly, C., Woopmann, A., Liu, N., Miljanich, G. P., and Ramachandran, J. 1991. Unique structure of the purified w-conopeptide receptor from electric ray electric organ terminals. Soc. Neurosci. Abstr., 17: 1161.

    Google Scholar 

  • Umbach, J. A., and Gundersen, C. B. 1987. Expression of an omega-conotoxin-sensitive calcium channel in Xenopus oocytes injected with mRNA from Torpedo electric lobe. Proc. Natl. Acad. Sci. USA, 86: 5464–5468.

    Article  Google Scholar 

  • Umbach, J. A., and Gundersen, C. B. 1991. Expression cloning of a cDNA fragment for a candidate presynaptic calcium channel. Ann. N. Y. Acad. Sci., 635: 443–445.

    Article  PubMed  CAS  Google Scholar 

  • Valtorta, F., Benfenati, F., and Greengard, P. 1992. Structure and function of the synapsins. J. Biol. Chem., 267:7195–7198.

    Google Scholar 

  • Varadi, G., Lory, P., Schultz, D., Varadi, M., and Schwartz, A. 1991. Acceleration of activation and inactivation by the 0-subunit of the skeletal muscle calcium channel. Nature, 352: 159–162.

    Article  PubMed  CAS  Google Scholar 

  • Vazquez, J., Feigenbaum, P., King, V. F., Kaczorowski, G. J., and Garcia, M. L. 1990. Characterization of high affinity binding sites for charybdotoxin in synaptic plasma membranes from rat brain. J. Biol. Chem., 265: 15564–15571.

    PubMed  CAS  Google Scholar 

  • Venema, V. J., Swiderek, K. M., Lee, T. D., Hathaway, G. M., and Adams, M. E. 1992. Antagonism of synaptosomal calcium channels by subtypes of w-agatoxins. J. Biol. Chem., 267: 2610–2615.

    PubMed  CAS  Google Scholar 

  • Volknandt, W., Schlafer, M., Bonzelius, F., and Zimmermann, H. 1990. Svp25, a synaptic vesicle membrane glycoprotein from Torpedo electric organ that binds calcium and forms a homo-oligomeric complex. EMBO J., 9: 2465–2470.

    PubMed  CAS  Google Scholar 

  • Wagner, J. A., Snowman, A. M., Biswas, A., Olivera, B. M., and Snyder, S. H. 1988. w-Conotoxin GVIA binding to a high-affinity receptor in brain: Characterization, calcium sensitivity, and solubilization. J. Neurosci., 8: 3354–3359.

    Google Scholar 

  • Werth, J. L., Hirning, L. D., and Thayer, S. A. 1991. w-Conotoxin exerts functionally distinct low and high affinity effects in the neuronal cell line NG108–15. Mol. Pharmacol., 40: 742–749.

    Google Scholar 

  • Westenbroek, R. E., Ahlijanian, M. K., and Catterall, W. A. 1990. Clustering of L-type Ca“ channels at the base of major dendrites in hippocampal pyramidal neurons. Nature, 347:281–284.

    Google Scholar 

  • Williams, M. E., Feldman. D. H., McCue, A. F., Brenner, R., Velicelebi, G., Ellis, S. B., and Harpold, M. M. 1992a. Structure and functional expression of a,, a 2 and ß subunits of a novel human neuronal calcium channel subtype. Neuron, 8:71–84.

    Google Scholar 

  • Williams, M. E., Brust, P. F., Feldman, D. H., Patthi, S., Simerson, S., Maroufi, A., McCue, A. F., Velicelebi, G., Ellis, S. B., and Harpold, M. M. 1992b. Structure and functional expression of an omega-conotixinsensitive human N-type calcium channel. Science, 257: 389–395.

    Article  PubMed  CAS  Google Scholar 

  • Wong, S. K., Slaughter, A. E., Ruoho, A. E., and Ross, E. M. 1988. The catecholamine binding site of the beta-adrenergic receptor is formed by juxtaposed membrane-spanning domains. J. Biol. Chem., 263: 7925–7928.

    PubMed  CAS  Google Scholar 

  • Wray, W., Boulikas, T., Wray, V. P., and Hancock, R. 1981. Silver staining of proteins in polyacrylamide gels. Anal. Biochem., 118: 197–203.

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi, T., Saisu, H., Mitsui, H., and Abe, T. 1988. Solubilization of the w-conotoxin receptor associated with voltage-sensitive calcium channels from bovine brain. J. Biol. Chem., 263: 9491–9498.

    PubMed  CAS  Google Scholar 

  • Yeager, R. E., Yoshikami, D., Rivier, J., Cruz, L. J., and Miljanich, G. P. 1987. Transmitter release from presynaptic terminals of electric organ: Inhibition by the calcium channel antagonist omega (“onus toxin. J. Neurosci., 7: 2390–2396.

    PubMed  CAS  Google Scholar 

  • Yoshida, A., Takahashi, M., Fujimoto, Y., Takisawa, H., and Nakamura, T. 1990. Molecular characteristics of 1,4-dihydropyridine-sensitive calcium channel of chick heart and skeletal muscle. J. Biochem., 107: 608–612.

    PubMed  CAS  Google Scholar 

  • Yoshida, A., Ohno, C., Omori, A., Kuwahara, R., Ito, T., and Takahashi, M. 1992. HPC-I is associated with synaptotagmin and w-CTX receptor. J. Biol. Chem., 267: 24925–24928.

    PubMed  CAS  Google Scholar 

  • Yuan, S. H., Arnold, W., and Jorgensen, A. O. 1991. Biogenesis of transverse tubules and triads: Immunolocalization of the 1,4-dihydropyride receptor, TS28, and the ryanodine receptor in rabbit skeletal muscle developing in situ. J. Cell Biol., 112: 289–301.

    Article  CAS  Google Scholar 

  • Zimmermann, H. 1990. Neurotransmiter release. FEBS Lett., 268: 394–399.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

McEnery, M.W. (1993). Purification and Pharmacological Analysis of the Omega-Conotoxin GVIA Receptor from Rat Brain. In: Glossmann, H., Striessnig, J. (eds) Methods in Pharmacology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-2239-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2239-0_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3232-7

  • Online ISBN: 978-1-4757-2239-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics