Skip to main content
Book cover

The Prokaryotes pp 3907–3913Cite as

Prokaryotic Symbionts of the Aphid

  • Chapter
  • 1982 Accesses

Abstract

All aphids have an intimate association with prokaryotic symbionts (Buchner, 1965; Houk, 1987). These symbionts are housed in specialized cells termed mycetocytes, which aggregate to form a subcellular organelle, the mycetome (Houk and Griffiths, 1980). While mycetocytes generally contain only one type of symbiont, the entire mycetomal population may consist of two or at most, three different symbionts (Houk, 1987). For example, the pea aphid (Acyrthosiphon pisum Harris) contains two endosymbionts designated the primary (P) symbiont and secondary (S) symbiont (Griffiths and Beck, 1973; McLean and Houk, 1973; Fig. 1). The P symbiont is the predominant organism and is located in the mycetocyte while the S symbiont, when present, is located in the sheath cells surrounding the mycetome. Within the mycetocyte, the P symbionts are found exclusively in vacuoles (Houk and Griffiths, 1980).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  • Akey, D. H., and S. D. Beck. 1972. Nutrition of the pea aphid, Acyrthosiphon pisum: requirements for trace metals, sulphur and cholesterol. J. Insect Physiol. 18: 1901–1914.

    Article  CAS  Google Scholar 

  • Bateman, D. E, and Basham, H. G. 1976. Degradation of plant cell walls and membranes by microbial enzymes. In: Heitefuss, R. and P. H. Williams (ed.), Encyclopedia of Plant Physiology, New Series. Physiological Plant Pathology. Springer-Verlag, Berlin. 316–355.

    Chapter  Google Scholar 

  • Boros, I., A. Kiss, and P. Venetianer. 1979. Physical map of the seven ribosomal RNA genes of Escherichia coli. Nucleic Acids Res. 6: 1817–1830.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Buchner, P. 1965. Endosymbiosis of animals with plant microorganisms. Wiley Interscience, New York.

    Google Scholar 

  • Bruening, G., R. Criddle, J. Preiss, and R. Rudert. 1971. Biochemical Experiments. Wiley Interscience, New York.

    Google Scholar 

  • Campbell, B. C., and D. L. Dreyer. 1985. Host-plant resistance of sorghum: differential hydrolysis of sorghum pectic substances by polysaccharases of greenbug biotypes (Schizaphis graminum, Homoptera:Aphididae). Arch. Insect Biochem and Physiol. 2: 203–216.

    Article  CAS  Google Scholar 

  • Campbell, B. C., and W. D. Nes. 1983. A reappraisal of sterol biosynthesis and metabolism in aphids. J. Insect Physiol. 29: 149–156.

    Article  CAS  Google Scholar 

  • Dadd, R. H., D. L. Krieger, and T. Mittler. 1967. Studies on the artificial feeding of the aphid Myzus persicae (Sulzer).-IV. Requirements for water-soluble vitamins and ascorbic acid. J. Insect Physiol. 13: 249–272.

    Article  CAS  Google Scholar 

  • Dadd, R. H., and Mittler, T. E. 1966. Permanent culture of an aphid on a totally synthetic diet. Experientia 22: 832.

    Article  PubMed  CAS  Google Scholar 

  • Dasch, G. A., E. Weiss, and K. P. Chang. 1984. Endosymbionts of insects, p. 811–833. In: N. Kreig (ed.), Bergey’s manual of systematic bacteriology, vol. 1. Williams and Wilkins, Baltimore.

    Google Scholar 

  • Distel, D. L., D. J. Lane, G. J. Osen, S. J. Giovannoni, B. Pace, N. R. Pace, D. A. Stahl, and H. Felbeck. 1988. Sulfur-oxidizing bacterial endosymbionts: analysis of phylogeny and specificity by 16S rRNA sequences. J. Bacteriol. 170: 2506–2510.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Dreyer, D. L., and B. C. Campbell. 1987. Chemical basis of host-plant resistance to aphids. Plant Cell Environ. 10: 353–361.

    CAS  Google Scholar 

  • Ehrhardt, P. 1968a. Der Vitaminbedarf einer siebrohrensaugenden Aphide, Neomyzus circumflexus Buckt. (Homoptera:Insecta). Zeitschrift fur Vergleichende Physiologie 60: 416–426.

    Article  Google Scholar 

  • Ehrhardt, P. 1968b. Einfluss von Erhnahrungsfaktoren auf die Entwicklung von Safte saugendenlnsekten unter besonderer Berucksichtigung von Symbionten.n Zeitschrift fur Parasitenkunde 31: 38–66.

    CAS  Google Scholar 

  • Eisenbach, J., and T. E. Mittler 1987. Extra-nuclear inheritance in a sexually produced aphid: the ability to overcome host plant resistance by biotype hybrids of the greenbug, Schizaphis graminum. Experientia 43: 332–334.

    Article  Google Scholar 

  • Ehrhardt P., and H. Schmutterer. 1966. Die Wirkung Verschiedener Antibiotica auf Entwicklung und Symbionten Kunstlich ernahrter Bohnenblattlaus (Aphis fabae Scop.). Zeitschrift fur Morphologie und Okologie der Tiere 56: 1–20.

    Article  Google Scholar 

  • Fredrick, J. F. (ed.), 1981. Origins and evolution of eukaryotic intracellular organelles. Annals of the New York Academy of Science, vol. 361.

    Google Scholar 

  • Griffiths, G. W, and S. D. Beck. 1973. Intracellular symbiotes of the pea aphid, Acyrthosiphon pisum. J. Insect Physiol. 19: 75–84.

    Article  Google Scholar 

  • Griffiths, G. W., and Beck, S. D. 1974. Effects of antibiotics on intracellular symbiotes in the pea aphid, Acyrthosiphon pisum. Cell and Tissue Research 148: 287–300.

    Article  PubMed  CAS  Google Scholar 

  • Griffiths, G. W., and S. D. Beck. 1977a. In vivo sterol biosynthesis by pea aphid symbiotes as determined by digitonin and electron microscopic autoradiography. Cell and Tissue Research 176: 179–190.

    PubMed  CAS  Google Scholar 

  • Griffiths, G. W., and S. D. Beck. 1977b. Effect of dietary cholesterol on the pattern of osmium deposition in the symbiote-containing cells of the pea aphid. Cell and Tissue Research 176: 191–203.

    PubMed  CAS  Google Scholar 

  • Henry, S. M. 1962. The significance of microorganisms in the nutrition of insects. Trans. NY. Acad. Sci. 24: 676–683.

    CAS  Google Scholar 

  • Hinde, R. 197la. Maintenance of aphid cells and the intracellular symbiotes of aphids in vitro. J. Inverteb. Pathol. 17: 333–338.

    Google Scholar 

  • Hinde, R. 197lb. The fine structure of the mycetome symbiotes of the aphids Brevicoryne brassicae, Myzus persicae and Macrosiphum rosae. J. Insect Physiol. 17: 2035–2050.

    Google Scholar 

  • Hinde, R. 1971c. The control of the mycetome symbiotes of the aphids Brevicoryne brassicae, Myzus persicae and Macrosiphum rosae.. J. Insect Physiol. 17: 1791–1800.

    Article  Google Scholar 

  • Houk, E. J. 1974a Maintenance of the primary symbiote of the pea aphid Acyrthosiphon pisum in liquid media. J. Inverteb. Pathol. 24: 24–28.

    Article  CAS  Google Scholar 

  • Houk, E. J. 1974b. Lipids of the primary intracellular symbiote of the pea aphid Acyrthosiphon pisum. J. Insect Physiol. 20: 471–478.

    Article  CAS  Google Scholar 

  • Houk, E. J. 1987. Symbionts, p. 123–129. In: A. K. Minks and P. Harrewijn, (ed.), W. Helle (ed. in chief), World crop pests. Elsevier, Amsterdam

    Google Scholar 

  • Houk, E. J., and G. W. Griffiths. 1980. Intracellular symbiotes of the Homoptera. Ann. Rev. of Entymology 25: 161–187.

    Article  CAS  Google Scholar 

  • Houk, E. J., Griffiths, G. W., and S. D. Beck. 1976. Lipid metabolism in the symbiotes of the pea aphid Acyrthosiphon pisum. Comp. Biochem. and Physiol. 54B: 427–431.

    CAS  Google Scholar 

  • Houk, E. J., G. W. Griffiths, Hadjokas, N. E., and S. D. Beck. 1977. Peptidoglycan in the cell wall of the primary intracellular symbiote of the pea aphid. Science 198: 401–403.

    Article  PubMed  CAS  Google Scholar 

  • Houk, E. J., and D. L. McLean. 1974. Isolation of the primary intracellular symbiote of the pea aphid, Acyrthosiphon Pison. J. Inverteb. Pathol. 23: 237–241.

    Article  Google Scholar 

  • Houk, E. J., D. L. McLean, and R. S. Criddle. 1980. Pea aphid primary symbiote deoxyribonucleic acid. J. Inverteb. Pathol. 35: 105–106.

    Article  CAS  Google Scholar 

  • Ishikawa, H. 1982a. Isolation of the intracellular symbionts and partial characterizations of their RNA species of the elder aphid, Acyrthosiphon magnoliae. Comp. Biochem. Physiol. 72B: 239–247.

    Google Scholar 

  • Ishikawa, H. 1982b. DNA, RNA and protein synthesis in the isolated symbionts from the pea aphid, Acyrthosiphon pisum. Insect Biochem. 12: 605–612.

    Article  CAS  Google Scholar 

  • Ishikawa, H. 1982c. Host-symbiont interactions in the protein synthesis in the pea aphid, Acyrthosiphon pisum. Insect Biochem. 12: 613–622.

    Article  CAS  Google Scholar 

  • Ishikawa, H. 1984a. Characterization of the protein species synthesized in vivo and in vitro by an aphid endosymbiont. Insect Biochem. 14: 417–425.

    Article  CAS  Google Scholar 

  • Ishikawa, 1984b. Control of macromolecule synthesis in the aphid endosymbiont by the host insect. Comp. Biochem. Physiol. 72B: 51–57.

    Google Scholar 

  • Ishikawa, H. 1987. Nucleotide composition and kinetic complexity of the genomic DNA of an intracellular symbiont in the pea aphid Acrythosiphon pisum. J. Mol. Evol. 24: 205–211.

    Article  CAS  Google Scholar 

  • Ishikawa H., M. Yamaji, and H. Hashimoto. 1985. Symbionin, an aphid endosymbiont-specific protein-II. Diminution of symbionin during post-embryonic development of aposymbiotic insects. Insect Biochem. 15: 165–174.

    Article  CAS  Google Scholar 

  • Krieger, D. L. 1971. Rearing several aphid species on syn- thetic diet. Ann. Entomol. Soc. Am. 64: 1176–1177.

    Google Scholar 

  • Lanham, U. N. 1968. The Blochmann bodies: hereditary intracellular symbionts of insects. Biol. Rev. Cambridge Philos. Soc. 43: 269–286.

    Article  PubMed  CAS  Google Scholar 

  • McLean, D. L., and E. J. Houk. 1973. Phase contrast and electron microscopy of the mycetocytes and symbiotes of the pea aphid, Acyrthosiphon pisum. J. Insect Physiol. 19: 625–633.

    Article  Google Scholar 

  • Minks, A. K, and P. Harreweijn. 1987. In: W. Helle (ed. in chief), World crop pests. Aphids vol. 2A. Elsevier, Amsterdam.

    Google Scholar 

  • Mittler, T. E. 1971a. Some effects on the aphid Myzus persicae of ingesting antibiotics incorporated into artificial diets. J. Insect Physiol. 17: 1333–1347.

    Article  CAS  Google Scholar 

  • Mittler, T. E. 197lb. Dietary requirements of the aphid Myzus persicae affected by antibiotic uptake. J. Nutr. 101: 1023–1038.

    Google Scholar 

  • Neumann, H., A., Tu, J., Leibrock, J., Staiger, D., and Zillig, W. 1983. Organization of the genes for ribosomal RNA in Archaebacteria. Mol. Gen. Genet. 192: 66–72.

    Google Scholar 

  • Olsen, G. J., D. J. Lane, S. J. Giovannoni, and N. R. Pace. 1986. Microbial ecology and evolution: a ribosomal RNA approach. Annu. Rev. Microbiol. 40: 337–365.

    Article  PubMed  CAS  Google Scholar 

  • Raccah, B. 1986. Nonpersistent viruses: epidemiology and control. Advances in Virus Research 31: 387–429.

    PubMed  CAS  Google Scholar 

  • Razin, S. 1985. Molecular biology and genetics of myco- plasmas (Mollicutes). Microbiol. Rev. 49: 419–455.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Rudner, R., Jarvis, E. D., and R. L. Widom. 1988. Chromosomal organization and spontaneous deletions of rrn operons in Bacillus subtilis, p. 115–120. In: A. T. Ganesan and J. A. Hoch (ed.), Genetics and biotechnology of bacilli, vol. 2. Academic Press, San Diego.

    Google Scholar 

  • Srivastava, P. N., and J. L. Auclair. 1976. Effects of antibiotics on feeding and development of the pea aphid, Acyrthosiphon pisum (Harris). Can. J. Zool. 54: 1025–1029.

    Article  CAS  Google Scholar 

  • Srivastava, P. N., Auclair, J. L., and Srivastava, U. 1980. Nucleic acid, nucleotide and protein concentrations in the pea aphid, Acyrthosiphon pisum, during larval growth and development. Insect Biochem. 10: 209–213.

    Article  CAS  Google Scholar 

  • Stackebrandt, E., R. G. E. Murray, and H. G. Truper. 1988. Proteobacteria classis nov., a name for the phylogenetic taxon that includes the “purple bacteria and their relatives.” Int. J. Syst. Bacteriol. 38: 321–325.

    Google Scholar 

  • Tokumitsu, T., and K. Maramorosch. 1966. Survival of aphid cells in vitro. Exp. Cell. Res. 44: 652–655.

    Article  PubMed  CAS  Google Scholar 

  • Turner, R. B. 1971. Dietary requirements for the cotton aphid Aphis gossypii: the sulfur-containing amino acids. J. Insect Physiol. 17: 2451–2456.

    Article  CAS  Google Scholar 

  • Turner, R. B., 1977. Quantitative requirements for tyrosine, phenylalanine and tryptophan by the cotton aphid, Aphis gossypii (Glover). Comp. Biochem. and Physiol. 56A: 203–205.

    Article  CAS  Google Scholar 

  • Unterman, B. M., P. Baumann, and D. L. McLean. 1989. Pea aphid symbiont relationships established by analysis of 16S rRNAs. J. Bacteriol. 171: 2970–2974.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Woese, C. R. 1987. Bacterial evolution. Microbiol. Rev. 51: 221–271.

    PubMed  CAS  PubMed Central  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gutnick, D.L. (1992). Prokaryotic Symbionts of the Aphid. In: Balows, A., Trüper, H.G., Dworkin, M., Harder, W., Schleifer, KH. (eds) The Prokaryotes. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-2191-1_54

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2191-1_54

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-2193-5

  • Online ISBN: 978-1-4757-2191-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics