Skip to main content
Book cover

The Prokaryotes pp 3855–3864Cite as

Prokaryotic Symbionts of Amoebae and Flagellates

  • Chapter

Abstract

Amoebae and flagellates have long been known to be associated with both extracellular and intracellular symbionts (Hall, 1969; Kirby, 1941 a; Lee et al., 1985). The presence of prokaryotic symbionts on and in flagellates and in some amoebae, as observed by light microscopy, was reported by several authors during the late 1800s and the early part of this century, as was comprehensively reviewed by Kirby (1941a). Symbiont-bearing flagellates were chiefly found in termite guts, and only a few free-living flagellates were found to have adhering symbionts. Hall (1969) extensively reviewed the literature on symbionts of protozoa published since 1941. Both in flagellates and amoebae, the suspected presence of some of the small bacterial symbionts had to be confirmed later by more sophisticated methods such as electron microscopy and specific staining.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  • Ahn, T. I., and Jeon, K. W. 1979. Growth and electron microscopic studies on an experimentally established bacterial endosymbiosis in amoebae. J. Cell. Physiol. 98: 49–58.

    Article  PubMed  CAS  Google Scholar 

  • Ahn, T. I., and Jeon, K. W. 1982. Structural and biochemical characteristics of the plasmalemma and vacuole membranes in amoebae. Exp. Cell Res. 137: 253–268.

    Article  PubMed  CAS  Google Scholar 

  • Armstrong, J. A., and Hart, P. D. 1971. Response of cultured macrophages to Mycobacterium tuberculosis, with observations on fusion of lysosomes with phagosomes. J. Exp. Med. 134: 713–740.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Beams, H. W., King, R. L., Thamisian, T. N., and Devine, R. I960. Electron microscope studies on Lophomonas striata with special reference to the nature and position of the striations. J. Protozool. 7: 91–101.

    Google Scholar 

  • Buchanan, R. E., and Gibbons, N. E. (ed.). 1974. Bergey’s manual of determinative bacteriology, 8th ed. Williams Wilkins, Baltimore.

    Google Scholar 

  • Cavalier-Smith, T. 1975. The origin of nuclei and of eukaryotic cells. Nature 256: 463–468.

    Article  Google Scholar 

  • Chang, K.-P. 1975. Reduced growth of Blastocrithidia culicis and Crithidia oncopelti freed of intracellular symbiotes by chloramphenicol. J. Protozool. 22: 271–276.

    Article  PubMed  CAS  Google Scholar 

  • Chang, K.-P., and Trager, W. 1974. Nutritional significance of symbiotic bacteria in two species of hemoflagellates. Science 183: 532–533.

    Article  Google Scholar 

  • Chapman-Andresen, C. 1971. Biology of the large amoebae. Annu. Rev. Microbiol. 25: 27–48.

    Article  PubMed  CAS  Google Scholar 

  • Chapman-Andresen, C., and Hayward, A. F 1963. Bacterial complexes in Amoeba proteus. British-Dutch-Scandinavian Mtg. Soc. Exp. Biol., Oxford, England.

    Google Scholar 

  • Chesnick, J. M., and Cox, E. R. 1986. Specialization of endoplasmic reticulum architecture in response to a bacterial symbiosis in Peridinium balticum (Pyrrhophyta). J. Phycol. 22: 291–298.

    Article  Google Scholar 

  • Choi, E. Y., and Jeon, K. W. 1988. The presence of a spectrin-like protein on symbiosome membranes of symbiont-bearing Amoeba proteus as studied with monoclonal antibodies. Endocyt. Cell Res. 6: 99–108.

    Google Scholar 

  • Cleveland, L. R., and Grimstone, A. V. 1964. The fine structure of the flagellate Mixotricha paradoxa and its associated micro-organisms. Proc. Roy. Soc. B159: 668–686.

    Article  Google Scholar 

  • Cleveland, L. R., Hall, S. R., Sanders, E. P., and Collier, J. 1934. The wood-feeding roach Cryptocercus, its Protozoa and the symbiosis between Protozoa and roach. Am. Acad. Arts Sci. Mem. 17: 185–342.

    Google Scholar 

  • Cohen, A. I. 1957. Electron microscopic observations of Amoeba proteus in growth and inanition. J. Biophys. Biochem. Cytol. 3: 859–866.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Cross, J. B. 1946. The flagellate subfamily Oxymonadinae. Univ. Calif. Pub. Zool. 53: 67–162.

    Google Scholar 

  • Dangeard, P. A. 1896. Contribution a l’etude des Acrasiees. Bot. 5: 1–20.

    Google Scholar 

  • Daniels, E. W. 1973. Ultrastructure, p. 125–169. In: K. W. Jeon, (ed.). The Biology of amoeba. Academic Press, New York.

    Google Scholar 

  • Daniels, E. W., and Breyer, E. P. 1967. Ultrastructure of the giant amoeba Pelomyxa palustris. J. Protozool. 14: 167–179.

    Article  Google Scholar 

  • Daniels, E. W., Breyer, E. P., and Kudo, R. R. 1965. Fine structure of the giant, algae-eating amoeba Pelomyxa palustris. Am. Zool. 5: 734–740.

    Google Scholar 

  • Daniels, E. W., Breyer, E. P., and Kudo, R. R. 1966. Pelomyxa palustris Greeff II. Its ultrastructure. Z. Zell-forsch. 73: 367–383.

    Google Scholar 

  • Davis, H. S. 1943. A new polymastigine flagellate, Costia pyriformis, parasitic on trout. J. Parasitol. 29: 385–386.

    Article  Google Scholar 

  • Doddema, H., and van der Veer, J. 1983. Crypt. Algol. 4: 89–98.

    Google Scholar 

  • Drozanski, W. 1963a. Studies of intracellular parasites of free-living amoebae. Acta Microbiol. Pol. 12: 3–8.

    Google Scholar 

  • Drozanski, W. 1963b. Observations on intracellular infection of amoebae by bacteria. Acta Microbiol. Pol. 12: 924.

    Google Scholar 

  • Drozanski, W., and Chemielewski, T. 1979. Electron microscopic studies of Acanthamoeba castellanii. Acta Microbiol. Pol. 28: 123–130.

    CAS  Google Scholar 

  • Drozanski, W., Drozanska, D., and Wicinska, M. 1984. The cell wall of the obligate intracellular bacterial parasite of small free-living amoebae. I. Morphology and chemical composition of the rigid layer and peptidoglycan. Acta Microbiol. Pol. 33: 195–206.

    CAS  Google Scholar 

  • Duboscq, O., and Grasse, P.-P. 1926. Les Schizophytes de Devescovina billi n. sp. Compt. Rend. Soc. Biol. Paris 94: 33–34.

    Google Scholar 

  • Duboscq, O., Grasse, R-P., and Rose, M. 1937. Les flagelles de l’Anacanthotermes ochraceus Sjost du Sud-Algerien. Compt. Rend. Acad. Sci. Paris 205: 574–576.

    Google Scholar 

  • Freymuller, E., and Camargo, E. P. 1981. Ultrastructural differences between species of trypanosomatids. J. Protozool. 28: 175–182.

    Article  PubMed  CAS  Google Scholar 

  • Gaines, G., and Elbrachter, M. 1987. Heterotrophic nutrition, p. 224–268. In: F. J. R. Taylor (ed.) The biology of dinoflagellates. Blackwell Publications, Oxford.

    Google Scholar 

  • Geitler, L. 1948. Symbiosen zwischen Chrysomonaden und knospenden bakterien-artigen Organismen sowie Beobachtungen über Organisationseigentümlichkeiten der Chrosomonaden. Österreich. Bot. Zeitschr. 95: 300–324.

    Article  Google Scholar 

  • Gerola, F. M., and Bassi, M. 1978. A case of parasitism in Euglena. J. Submicr. Cytol. 10: 261–263.

    Google Scholar 

  • Gill, J. W., and Vogel, H. J. 1962. Lysine synthesis and phylogeny: biochemical evidence for a bacterial-type endosymbiote in the protozoon Herpetomonas (Strigomonas) oncopelti. Biochim. Biophys. Acta 56: 200–201.

    Article  PubMed  CAS  Google Scholar 

  • Gill, J. W., and Vogel, H. J. 1963. A bacterial endosymbiote in Crithidia (Strigomonas) oncopelti: biochemical and morphological aspect. J. Protozool. 10: 148–152.

    Article  Google Scholar 

  • Giovannoni, S. J., DeLong, E. E, Olsen, G. J., and Pace, N. R. 1988. Phylogenetic group-specific oligodeoxynucleotide probes for identification of single microbial cells. J. Bacteriol. 170: 720–726.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Goldschmidt, R. 1907. Lebensgeschichte der Mastigamoben, Mastigella vitrea n. sp. und Mastigina setosa n. sp. Arch. Protistenk 1 (Suppl.), 83–168.

    Google Scholar 

  • Goldstein, L., and Ko, C. 1976. A method for the mass culturing of large free-living amoebas. Methods Cell Biol. 13: 239–246.

    Article  PubMed  CAS  Google Scholar 

  • Gould-Veley, L. J. 1905. A further contribution to the study of Pelomyxa palustris (Greeff). J. Linn. Soc. 29: 374–395.

    Article  Google Scholar 

  • Grasse, P. P. 1926. Sur la nature des cotes cuticulaires des Polymastix et Lophomonas striata. Compt. Rend. Soc. Biol. Paris 94: 1014–1015.

    Google Scholar 

  • Gray, M. W., and Doolittle, W. F. 1982. Has the endosymbiont hypothesis been proven? Microbiol. Rev. 46: 142.

    Google Scholar 

  • Grimstone, A. V. 1961. The fine structure of Streblomastix strix. Proc. I Int. Congr. Protozool., p. 121.

    Google Scholar 

  • Gromov, V., Seravin, L. N., and Gerasimova, Z. R 1977. Bacteria-corticae symbionts of Trichonympha turkestanica, a protozoan from the gut tract of termite Hodotermes murgabicus. Mikrobiol. (russ.) 46: 971–973.

    CAS  Google Scholar 

  • Guttman, H. N., and Eisenman, R. N. 1965. “Cure” of Crithidia (Strigomonas) oncopelti of its bacterial endosymbiote. Nature 206:113–114.

    Google Scholar 

  • Hall, G. H. 1969. Organisms living on and in protozoa, p. 566–718. In: T.-T. Chen (ed.), Research in protozoology, vol. 3. Pergamon Press, London.

    Google Scholar 

  • Hall, J., and Voelz, H. 1985. Bacterial endosymbionts of Acanthamoeba sp. J. Parasitol. 71: 89–95.

    Article  PubMed  CAS  Google Scholar 

  • Hamburger, B. 1958. Bakteriensymbiose bei Volvox aureus Ehrenberg. Arch. Mikrobiol. 29: 291–310.

    Article  PubMed  CAS  Google Scholar 

  • Han, J. H., and Jeon, K. W. 1980. Isolation and partial characterization of two plasmid DNAs from endosymbiotic bacteria in Amoeba proteus. J. Bacteriol. 141: 1466–1469.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Jeon, K. W. 1972. Development of cellular dependence on infective organisms: Micrurgical studies in amoebas. Science 176: 1122–1123.

    Article  PubMed  CAS  Google Scholar 

  • Jeon, K. W. 1980. Symbiosis of bacteria with Amoeba, p. 245–262. In: C. B. Cook, P. Pappas, and E. Rudolph (ed.), Cellular interactions in symbiotic and parasitic relationships. Ohio State University Press, Columbus.

    Google Scholar 

  • Jeon, K. W. 1983. Integration of bacterial endosymbionts in amoebae. Int. Rev. Cytol. Suppl. 14: 29–47.

    Google Scholar 

  • Jeon, K. W. 1986. Bacterial endosymbionts as extrachromosomal elements in Amoebas, p. 363–371. In: R. B. Wickner, A. Hinnebusch, A. Labowitz, I. C. Gunsalus, and A. Hollaender (ed.), Extrachromosomal elements in lower eukaryotes. Plenum Press, New York.

    Chapter  Google Scholar 

  • Jeon, K. W. 1987. Change of cellular “pathogens” into required cell components. Ann. N. Y. Acad. Sci. 503: 359–371.

    Article  PubMed  CAS  Google Scholar 

  • Jeon, K. W., and Ahn, T. I. 1978. Temperature sensitivity: A cell character determined by obligate endosymbionts in amoebas. Science 202: 635–637.

    Article  PubMed  CAS  Google Scholar 

  • Jeon, K. W., and Hah, J. C. 1977. Effect of chloramphenicol on bacterial endosymbiotes in a strain of Amoeba proteus. J. Protozool. 24: 289–293.

    Article  PubMed  CAS  Google Scholar 

  • Jeon, K. W., and Jeon, M. S. 1975. Cytoplasmic filaments and cellular wound healing in Amoeba proteus. J. Cell Biol. 67: 243–249.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Jeon, K. W., and Jeon, M. S. 1976. Endosymbiosis in amoebae: Recently established endosymbionts have become required cytoplasmic components. J. Cell. Physiol. 89: 337–347.

    Article  PubMed  CAS  Google Scholar 

  • Jeon, K. W., and Jeon, M. S. 1982. Experimental cross-infection of Chaos carolinensis with endosymbiotic bacteria from Amoeba proteus. J. Protozool.. 29: 493A.

    Google Scholar 

  • Jeon, K. W., and Lorch, I. J. 1967. Unusual intra-cellular bacterial infection in large, free-living amoebae. Exp. Cell Res. 48: 236–240.

    Article  PubMed  CAS  Google Scholar 

  • Kim, H. B., and Jeon, K. W. 1986. Protein synthesis by bacterial endosymbionts in amoebae. Endocyt. Cell Res. 3: 299: 309.

    Google Scholar 

  • Kim, H. B., and Jeon, K. W. 1987a. A monoclonal antibody against a symbiont-synthesized protein in the cytosol of symbiont-dependent amoebae. J. Protozool. 34: 393–397.

    Article  CAS  Google Scholar 

  • Kim, H. B., and Jeon, K. W. 1987b. Actin-like protein accumulated within symbiont-containing vesicles of amoebae as studied using a monoclonal antibody. Endocyt. Cell Res. 4: 151–166.

    Google Scholar 

  • Kirby, H. 1932. Protozoa in termites of genus Armitermes. Parasitol. 24: 289–304.

    Article  Google Scholar 

  • Kirby, H. 1936. Two polymastigote flagellates of the genera Pseudodevescovina and Cauduceia. Quart. J. Micros. Sci. 79: 309–335.

    Google Scholar 

  • Kirby, H. 1938a. The devescovinid flagellates Caduceia theobromae Franca, Pseudodevescovina ramosa new species, and Macrotrichomanas pulchra Grassi. Univ. Calif. Pub. Zool. 43: 1–40.

    Google Scholar 

  • Kirby, H. 1938b. Polymastigote flagellates of the genus Foaina Janicki, and two new genera Crucinympha and Bulanympha. Quarterly J. Micros. Sci. 81: 1–25.

    Google Scholar 

  • Kirby, H. 194la. Organisms living on and in protozoa, p. 1009–1013. In: G. N. Calkins and F. M. Summers, (ed). Protozoa in biological research. Columbia Univ. Press, New York.

    Google Scholar 

  • Kirby, H. 194lb. Devescovinid flagellates of termites. I. The genus Devescovina. Univ. Calif. Pub. Zool. 45: 1–92.

    Google Scholar 

  • Kirby, H. 1942a. Devescovinid flagellates of termites. II. The genera Caduceia and Macrotrichomonas. Univ. Calif. Pub. Zool. 45: 93–166.

    Google Scholar 

  • Kirby, H. 1942b. Devescovinid flagellates of termites. II. The genera Foaina and Parajoenia. Univ. Calif. Pub. Zool. 45: 167–246.

    Google Scholar 

  • Kirby, H. 1944. The structural characteristics and nuclear parasites of some species of Trichonympha in termites. Univ. Calif. Pub. Zool. 49: 185–282.

    Google Scholar 

  • Kirby, H. 1946. Gigantomonas herculea Dogiel, a polymastigote flagellate with flagellated and amoeboid phases of development. Univ. Calif. Pub. Zool. 53: 163–226.

    Google Scholar 

  • Kirby, H. 1949. Devscovinid flagellates of termites. V. The genus Hyperdevescovina, the genus Bullanympha, and undescribed or unrecorded species. Univ. Calif. Pub. Zool. 53: 319–422.

    Google Scholar 

  • Kochert, G., and Olson, L. W. 1970. Endosymbiotic bacteria in Volvox carteri. Trans. Am. Micros. Soc. 89: 475–478.

    Article  Google Scholar 

  • Koidzumi, M. 1921. Studies on the intestinal Protozoa found in the termites of Japan. Parasitol. 13: 235–309.

    Article  Google Scholar 

  • Krylov, M. V., Podlipaev, S. A., Khaetskii, A. S., Belova, L. M., Frolov, A. O., Niyazbekova, and B. Ya. 1985. Is only one species present in a culture of Crithidia oncopelti kinetoplastmonada trypanosomatidae? Zool. Zh. 64: 165–171.

    Google Scholar 

  • Lauterborn, R. 1916. Die sapropelische Lebewelt. Ein Beitrag zur Biologie des Faulschlammes naturlicher Gewasser. Verh. Naturwis. Ver. Heidelberg 13: 395–481.

    Google Scholar 

  • Lee, J. J., and Fredrick, J. E (ed). 1987. Endocytobiology III, vol. 503, Ann. N.Y. Acad. Sci. N.Y. Academy of Sciences, New York.

    Google Scholar 

  • Lee, J. J., Soldo, A. T., Lee, M. J., Reisser, W., Jeon, K. W., and Gortz, H.-D. 1985. The extent of algal and bacterial endosymbiosis in protozoa. J. Protozool. 32: 391–403.

    Article  CAS  Google Scholar 

  • Leiner, M., and Wohlfeil, W. 1953. Pelomyxa palustris Greeff und ihre symbiontischen Bakterien. Arch. Protistenk. 98: 227–286.

    Google Scholar 

  • Lorch, I. J., and Jeon, K. W. 1980. Resuscitation of amoebae deprived of essential symbiotes: Micrurgical studies. J. Protozool. 27: 423–426.

    Article  Google Scholar 

  • Lorch, I. J., and Jeon, K. W. 1981. Rapid induction of cellular strain specificity by newly acquired cytoplasmic components in amoebas. Science 211: 949–951.

    Article  PubMed  CAS  Google Scholar 

  • Lorch, I. J., and Jeon, K. W. 1982. Nuclear lethal effect and nucleocytoplasmic incompatibility induced by endosymbionts in Amoeba proteus. J. Protozool. 29: 468–470.

    Article  Google Scholar 

  • Margulis, L. 1970. Origin of eukaryotic cells. Yale Univ. Press, New Haven.

    Google Scholar 

  • Margulis, L. 1981. Symbiosis and cell evolution. W. H. Freeman, San Francisco.

    Google Scholar 

  • Mackinnon, D. L. 1914. Observations on amoebae from the intestine of the crane-fly larva, Tipula sp. Arch. Protistenk. 32: 267–277.

    Google Scholar 

  • McLaughlin, G. L., and Cain, G. D. 1985a. Cell surface proteins of symbiotic and aposymbiotic strains of Crithidia oncopelti and Blastocrithidia culicis. Comp. Biochem. Physiol. 82B: 469–477.

    Google Scholar 

  • McLaughlin, G. L., and Cain, G. D. 1985b. Characterization of whole-cell and organelle protein synthesis in normal and aposymbiotic strains of Crithidia oncopelti and Blastocrithidia culicis. Comp. Biochem. Physiol. 82B: 479–486.

    Article  Google Scholar 

  • McLaughlin, G. L., Wood, D. L., and Cain, G. D. 1983. Lipids and carbohydrates in symbiotic and aposymbiotic Crithidia oncopelti and Blastocrithidia culicis. Comp. Biochem. Physiol. 76B: 143–152.

    Article  Google Scholar 

  • Moulder, J. W. 1979. The cell as an extreme environment. Proc. Roy. Soc. Lond. B204: 199–210.

    Article  CAS  Google Scholar 

  • Nagler, K. 1910. Fakultative parasitische Micrococcen in Amoben. Arch. Protistenk. 19: 246–254.

    Google Scholar 

  • NMewton, B. A. 1956. A synthetic growth medium for the trypanosomid flagellate Strigomonas (Herpetomonas) oncopelti. Nature 177: 279–280.

    Article  Google Scholar 

  • Newton, B. A. 1957. Nutritional requirements and biosynthetic capabilities of the parasitic flagellate Strigomonas oncopelti. J. Gen. Microbiol. 17: 708–717.

    Article  PubMed  CAS  Google Scholar 

  • Newton, B. A., and Home, R. W. 1957. Intracellular structures in Strigomonas oncopelti. I. Cytoplasmic structures containing ribonucleoprotein. Exp. Cell Res. 13: 563–574.

    Google Scholar 

  • Novey, F. G., McNeal, W. J., and Torrey, H. N. 1907. The trypanosomes of mosquitoes and other insects. J. Infect. Dis. 4: 223–276.

    Article  Google Scholar 

  • Nurse, E. M. 1945. Protozoa from New Zealand termites. Trans. Roy. Soc. N.Z. 74: 305–314.

    Google Scholar 

  • Park, M. S., and Jeon, K. W. 1988. A symbiont gene coding for a protein required for the host amoeba: Cloning and expression in phage-transformed E. coli. Endocyt. Cell Res. 5: 215–224.

    Google Scholar 

  • Park, M. S., and Jeon, K. W. 1989. Nucleotide sequence of a symbiont gene coding for a protein required for the host amoeba. Endocyt. Cell Res. 7: 37–44.

    Google Scholar 

  • Penard, E. 1902. Faune rhizopodique du bassin du Leman. H. Koundig, Geneva.

    Google Scholar 

  • Proca-Ciobanu, M., Lupascu, G. H., Petrovic, A. L., and Ionescu, M. D. 1975. Electron microscopic study of a pathogenic Acanthamoeba castellanii strain. The presence of bacterial endosymbionts. Int. J. Parasitol. 5: 49–54.

    Article  PubMed  CAS  Google Scholar 

  • Radchenko, A. I. 1983. Morphology and ultrastructure of the euglenoid flagellate Peranema trichophorum. Tsitol. 25: 141–147.

    CAS  Google Scholar 

  • Raff, R. A., and Mahler, H. R. 1972. The non-symbiotic origin of mitochondria. Science 177: 575–582.

    Article  PubMed  CAS  Google Scholar 

  • Roth, E., Jeon, K., and Stacey, G. 1988. Homology in endosymbiotic systems: The term “Symbiosome,” p. 220–225. In: Molecular genetics of plant-microbe interactions. R. Palacios and D. P. S. Verma (ed.), APS Press, St. Paul, MN.

    Google Scholar 

  • Roth, L. E. 1959. An electron-microscope study of the cytology of the protozoan Peranema trichophorum. J. Protozool. 6: 107–116.

    Article  Google Scholar 

  • Roth, L. E., and Daniels, E. W. 1961. Infective organisms in the cytoplasm of Amoeba proteus. J. Biophys. Biochem. Cytol. 9: 317–323.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sagan, L. 1967. On the origin of mitosing cells. J. Theoret. Biol. 14: 225–275.

    Article  CAS  Google Scholar 

  • Skuja, H. 1958. Eine neue vorwiegend sessil oder rhizopodial aufretende synbakteriotische Polytomee aus einem Schwefelgewasser. Sven. Bot. Tidkr. 52: 379–390.

    Google Scholar 

  • Sousa-Silva, E., and Franca, S. 1985. The association dinoflagellate-bacteria: Their ultrastructural relationship in two species of dinoflagellates. Protistol. 21: 429–446.

    Google Scholar 

  • Steidinger, S. A., and Baden, D. G. 1984. Toxic marine dinoflagellates, p. 201–262. In: D. L. Spector (ed.), Dinoflagellates. Academic Press, New York.

    Chapter  Google Scholar 

  • Sutherland, J. L. 1933. Protozoa from Australian termites. Quart. J. Micros. Sci. 76: 145–173.

    Google Scholar 

  • Taylor, F. J. R. 1974. Implications and extensions of the serial endosymbiosis theory of the origin of eukaryotes. Taxon 23: 229–258.

    Article  Google Scholar 

  • Trager, W. 1959. The enhanced folic and folinic acid contents of erythrocytes infected with malaria parasites. Exp. Parasitol. 8: 265–273.

    Article  PubMed  CAS  Google Scholar 

  • Tschermak-Woess, E. 1950. Über eine Synbakteriose und ähnliche Symbiosen. Oesterreich. Bot. Zeitschr. 97: 188–206.

    Article  Google Scholar 

  • Turner, J. B., and Friedmann, E. I. 1974. Fine structure of capitular filaments in the coenocytic green alga Penicillus. J. Phycol. 10: 125–134.

    Google Scholar 

  • Uzzell, T., and Spolsky, C. 1974. Mitochondria and plastids as endosymbionts: a revival of special creation ? Am. Sci. 62: 334–343.

    PubMed  CAS  Google Scholar 

  • Uzzell, T., and Spolsky, C. 1981. Two data sets: Alternative explanations and interpretations. Ann. N.Y. Acad. Sci. 361: 481–499.

    Article  PubMed  CAS  Google Scholar 

  • van Bruggen, J. J. A., Stumm, C. K., and Vogels, G. D. 1983. Symbiosis of methanogenic bacteria and sapropelic protozoa. Arch. Microbiol. 136: 89–95.

    Article  Google Scholar 

  • van Bruggen, J. J. A., Stumm, C. K., Zwart, K. B., and Vogels, G. D. 1985. Endosymbiotic methanogenic bacteria of the sapropelic amoeba Mastigella. EEMS Microbiol. Ecol. 31: 187–192.

    Google Scholar 

  • Watson, J. D., Hopkins, N. H., Roberts, J. W., Steiz, J. A., and Weiner, A. M. 1987. Molecular biology of the gene, 4th ed. p. 1154–1155. Benjamin Cummins, Menlo Park, CA.

    Google Scholar 

  • Wenyon, C. M. 1907. Observations on Protozoa in the in- testine of mice. Arch. Protistenk. Suppl. 1: 169–201.

    Google Scholar 

  • Wilcox, L. W. 1986. Prokaryotic endosymbionts in the chloroplast stroma of the dinoflagellate Woloszynskia pascheri. Protoplasma 135: 71–79.

    Article  Google Scholar 

  • Wolstenholme, D. R., and Plaut, W. 1964. Cytoplasmic DNA synthesis in Amoeba proteus III. Further studies on the nature of the DNA-containing elements. J. Cell Biol. 22: 505–513.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Jeon, K.W. (1992). Prokaryotic Symbionts of Amoebae and Flagellates. In: Balows, A., Trüper, H.G., Dworkin, M., Harder, W., Schleifer, KH. (eds) The Prokaryotes. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-2191-1_51

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2191-1_51

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-2193-5

  • Online ISBN: 978-1-4757-2191-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics