Skip to main content

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 107))

Abstract

The microcirculation of the kidney is unique. Most organs are relatively homogeneously prefused by arteries and veins that are interconnected by a capillary bed that supplies oxygen and nutrients to the tissue. In contrast, the perfusion of the kidney is highly heterogeneous. Tissue blood flows range from 700 ml • min-1 • 100g-1 of tissue in the renal cortex to around 50 ml • min-1 • 100g-1 of tissue in the renal papilla [1–5]. Moreover, there are structural differences in the microvasculature in various regions of the kidney, and each region contains specialized vascular structures that serve the excretory function of the kidney [6, 7]. In this regard, the renal vasculature not only supplies the metabolic needs of the tissue, but it also ultrafilters solutes and water into the tubular system, reabsorbs tubular fluid, preserves the osmotic gradient in the renal medulla, and regulates tubular function by influencing the composition of, and the hydrostatic pressure in, the renal interstitium.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brenner, B.M., R. Zatz, and I. Ichikawa. 1986. The renal circulations. In The Kidney, Brenner, B.M., Rector, F.C., eds. Philadelphia: W.B. Saunders Company, pp 93–123.

    Google Scholar 

  2. Mimran, A. 1987. Regulation of renal blood flow. J Cardiovasc Pharmacol 10(Suppl 5):51–59.

    Google Scholar 

  3. Cupples, W. A. 1986. Renal medullary blood flow: its measurement and physiology. Can J Physiol Pharmacol 64:873–880.

    Article  PubMed  CAS  Google Scholar 

  4. Knox, F. G., E. L. Ritman, and J.C. Romero. 1984. Intrarenal distribution of blood flow: Evolution of a new approach to measurement. Kidney Int 25:473–479.

    Article  PubMed  CAS  Google Scholar 

  5. Aukland, K. 1980. Methods for measuring renal blood flow: Total flow and regional distribution. Annu Rev Physiol 42:543–555.

    Article  PubMed  CAS  Google Scholar 

  6. Zimmerhackl, B. L., C. R. Robertson, and R.L. Jamison. 1987. The medullary microcirculation. Kidney Int 31:641–647.

    Article  PubMed  CAS  Google Scholar 

  7. Kriz, W. 1981. Structural organization of the renal medulla: Comparative and functional aspects. Am J Physiol 241:R3–R16.

    PubMed  CAS  Google Scholar 

  8. McNay, J. L., and Y. Abe. 1970. Pressure-dependent heterogeneity of renal cortical hemodynamics in dogs. Circ Res 27:571–587.

    Article  PubMed  CAS  Google Scholar 

  9. Katz, M. A., R.C. Blantz, F.C. Rector Jr., and D.W. Seldin. 1971. Measurement of intrarenal blood flow. I. Analysis of microsphere method. Am J Physiol 220:1903–1913.

    PubMed  CAS  Google Scholar 

  10. Bankir, L., M.M. Trinh Trang Tan, and J.P. Grunfeld. 1979. Measurement of glomerular blood flow in rabbits and rats. Erroneous findings with 15 µm microspheres. Kidney Int 15:126–133.

    Article  PubMed  CAS  Google Scholar 

  11. Wolgast, M. 1968. Studies on the regional renal blood flow with labeled red cells and small beta sensitive semiconductor detectors. Acta Physiol Scand Suppl 31:1–109.

    Google Scholar 

  12. Kramer, K., K. Thurau, and P. Deetjen. 1960. Hamodynamik des Nierenmarks. I. Mitteilung Capillare Passagezeit, Blutvolumen, Durchblutung, Gewebshamatokrit und O2Verbrauch des Nierenmarks in situ. Plugers Arch 270:251–269.

    Article  CAS  Google Scholar 

  13. Thurau, K. 1964. Renal hemodynamics. Am J Med 36:698–719.

    Article  PubMed  CAS  Google Scholar 

  14. Lilienfield, L.S., H.C. Maganzini, and M.H. Bauer. 1961. Blood flow in the renal medulla. Circ Res 9:614–617.

    Article  PubMed  CAS  Google Scholar 

  15. Solez, K., E.C. Kramer, J. A. Fox, and R. H. Hepinstall. 1974. Medullary plasma flow and intravascular leukocyte accumulation in acute renal failure. Kidney Int 6:24–37.

    Article  PubMed  CAS  Google Scholar 

  16. Rasmussen, S. N. 1978. Red cell and plasma flows to the inner medulla of the rat kidney. Pflugers Arch 373:153–159.

    Article  PubMed  CAS  Google Scholar 

  17. Holliger, C., K. V. Lemley, S.L. Schmitt, F. L. Thomas, C. R. Robertson, and R.L. Jamison. 1983. Direct determination of vasa recta blood flow in the rat renal papilla. Circ Res 53:401–413.

    Article  PubMed  CAS  Google Scholar 

  18. Zimmerhackl, B., C. R. Robertson, and R.L. Jamison. 1985. Fluid uptake in the renal papilla by vasa recta estimated by two different methods simultaneously. Am J Physiol 248:F347-F353.

    PubMed  CAS  Google Scholar 

  19. Zimmerhackl, B., J. Tinsman, R.L. Jamison, and C. R. Robertson. 1985. Use of digital cross-correlation for on-line determination of single vessel blood flow in the mammalian kidney. Microvasc Res 30:63–74.

    Article  PubMed  CAS  Google Scholar 

  20. Cohen, H.J., D.J. Marsh, and B. Kayser. 1983. Autoregulation in the vasa recta of the rat kidney. Am J Phvsiol 245:F32–F40.

    CAS  Google Scholar 

  21. Stern, M.D. 1975. In vivo evaluation of microcirculation by coherent light scattering. Nature 254:56–58.

    Article  PubMed  CAS  Google Scholar 

  22. Stern, M.D., P. D. Bowen, R. Parma, R.W. Osgood, R.L. Bowman, and J. H. Stein. 1987. Measurement of renal cortical and medullary blood flow by laser-Doppler spectroscopy in the rat. Am J Phvsiol 236:F80–F87.

    Google Scholar 

  23. Stern, M. D., D. L. Lappe, P. D. Bowen, J. E. Chimosky, G. A. Holloway Jr., H. R. Keiser, and R.L. Bowman. 1977. Continuous measurement of tissue blood flow by laser-Doppler spectroscopy. Am J Physiol 232:H441–H448.

    PubMed  CAS  Google Scholar 

  24. Bonner, R., and R. Nossal 1981. Model for laser-Doppler measurements of blood flow in tissue. Appl Optics 20:2097–2107.

    Article  CAS  Google Scholar 

  25. Nilsson, G.E. 1984. Signal processor for laser-Doppler tissue flow meters. Med Biol Eng Comp 22:343–348.

    Article  CAS  Google Scholar 

  26. Roman, R.J., and C. Smits. 1985. Laser-Doppler determination of papillary blood flow in young and adult rats. Am J Physiol 251:F115–F124.

    Google Scholar 

  27. Smits, G.J., R.J. Roman, and J.H. Lombard. 1986. Evaluation of laser-Doppler flowmetry as a measure of tissue blood flow. J Appl Physiol 61:666–672.

    PubMed  CAS  Google Scholar 

  28. Takezawa, K., A.W. Cowley Jr., M. Skelton, and R.J. Roman. 1987. Atriopeptin II alters renal medullary hemodynamics and the pressure-diuresis response in rats. Am J Physiol 252: F992–F1002.

    PubMed  CAS  Google Scholar 

  29. Roman, R.J., M. L. Kaldunski, A. G. Scicli, and O. A. Carretero. 1988. Influence of kinins and angiotensin II on the regulation of papillary blood flow. Am J Physiol 255:F690–F698.

    PubMed  CAS  Google Scholar 

  30. Hansell, P., and H.R. Ulfendahl. 1986. Atriopeptins and renal cortical and papillary blood flow. Acta Physiol Scand 127:349–357.

    Article  PubMed  CAS  Google Scholar 

  31. Roman, R.J., and E. Lianos. Influence of renal prostaglandins on papillary blood flow, renal interstitial pressure and the pressure natriuretic response. Hypertension 13, in press.

    Google Scholar 

  32. Thomas, C. E., and L.G. Navar. 1988. Influence of calcium channel blockade on the renal vasoconstrictive actions of platlet activating factor. Kidney Int 33:413.

    Google Scholar 

  33. Nygren, A., H.R. Ulfendahl, P. Hansell, and U. Erikson. 1988. Effects of intravenous contrast media on cortical and medullary blood flow in the rat. Invest Radiol 23:753–761.

    Article  PubMed  CAS  Google Scholar 

  34. Pollock, D.M., and W.J. Aredshorst. Tubuloglomerular feedback and blood flow autoregulation during DA1-induced renal vasodilation. Am J Physiol, in press.

    Google Scholar 

  35. Spelman, F. A., P. Å. Öberg, and C. Astley. 1986. Localized neural control of blood flow in the renal cortex of the anesthetized baboon. Acta Physiol Scand 127:437–441.

    Article  PubMed  CAS  Google Scholar 

  36. Roman, R.J., and M.L. Kaldunski. 1988. Renal cortical and papillary blood in spontaneously hypertensive rats. Hypertension 11:657–663.

    Article  PubMed  CAS  Google Scholar 

  37. Roman, R.J., A.W. Cowley Jr., J. Garcia-Estañ, and J. L. Lombard. 1988. Pressure-diuresis in volume-expanded rats: Cortical and medullary hemodynamics. Hypertension 12:168– 76.

    Google Scholar 

  38. Nilsson, G.E., T. Tenland, and P.Å. Öberg. 1980. Evaluation of a laser Doppler flowmeter for measurement of tissue blood flow. IEEE Trans Biomed Eng 27:597–604.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Roman, R.J. (1990). Renal Blood Flow. In: Shepherd, A.P., Öberg, P.Å. (eds) Laser-Doppler Blood Flowmetry. Developments in Cardiovascular Medicine, vol 107. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-2083-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2083-9_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-4745-1

  • Online ISBN: 978-1-4757-2083-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics