Skip to main content

Cross-Phase Modulation: A New Technique for Controlling the Spectral, Temporal, and Spatial Properties of Ultrashort Pulses

  • Chapter
Book cover The Supercontinuum Laser Source

Abstract

Self-phase modulation (SPM) is the principal mechanism responsible for the generation of picosecond and femtosecond white-light supercontinua. When an intense ultrashort pulse propagates through a medium, it distorts the atomic configuration of the material, which changes the refractive index. The pulse phase is time modulated, which causes the generation of new frequencies. This phase modulation originates from the pulse itself (self-phase modulation). It can also be generated by a copropagating pulse (cross-phase modulation).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agrawal, G.P. (1987) Modulation instability induced by cross-phase modulation. Phys. Rev. Lett. 59, 880–883.

    Article  Google Scholar 

  • Agrawal, G.P. and M.J. Potasek (1986) Nonlinear pulse distortion in single-mode optical fibers at the zero-dispersion wavelength. Phys. Rev. 3, 1765–1776.

    Google Scholar 

  • Agrawal, G.P., P.L. Baldeck, and R.R. Alfano (1988) Optical wave breaking and pulse compression due to cross-phase modulation in optical fibers. Conference abstract # MW3, in Digest of the 1988 OSA annual meeting. Optical Society of America, Washington, D.C. Opt. Lett. 14, 137–139 (1989).

    Google Scholar 

  • Agrawal, G.P., P.L. Baldeck, and R.R. Alfano (1989a) Temporal and spectral effects of cross-phase modulation on copropagating ultrashort pulses in optical fibers. Submitted for publication in Phys. Rev. A.

    Google Scholar 

  • Agrawal, G.P., P.L. Baldeck, and R.R. Alfano (1989b) Modulation instability induced by cross-phase modulation in optical fibers. Phys. Rev. A (April 1989 ).

    Google Scholar 

  • Alfano, R.R. and P.P. Ho (1988) Self-, cross-, and induced-phase modulations of ultrashort laser pulse propagation. IEEE J. Quantum Electron. 24, 351–364.

    Article  Google Scholar 

  • Alfano, R.R., and S.L. Shapiro (1970) Emission in the region 4000–7000 A via four-photon coupling in glass. Phys. Rev. Lett. 24, 584–587. Observation of self-phase modulation and small scale filaments in crystals and glasses. Phys. Rev. Lett. 24, 592–594.

    Google Scholar 

  • Alfano, R.R., Q. Li, T. Jimbo, J.T. Manassah, and P.P. Ho (1986) Induced spectral broadening of a weak picosecond pulse in glass produced by an intense ps pulse. Opt. Lett. 11, 626–628.

    Article  Google Scholar 

  • Alfano, R.R., Q.Z. Wang, T. Jimbo, and P.P. Ho (1987a) Induced spectral broadening about a second harmonic generated by an intense primary ultrafast laser pulse in ZnSe crystals. Phys. Rev. A35, 459–462.

    Article  Google Scholar 

  • Alfano, R.R., P.L. Baldeck, F. Raccah, and P.P. Ho (1987b) Cross-phase modulation measured in optical fibers. Appl. Opt. 26, 3491–3492.

    Article  Google Scholar 

  • Alfano, R.R., P.L. Baldeck, and P.P. Ho (1988) Cross-phase modulation and induced-focusing of optical nonlinearities in optical fibers and bulk materials. Conference abstract # ThA3, In Digest of the OSA topical meeting on nonlinear optical properties of materials Optical Society of America, Washington, D.C.

    Google Scholar 

  • Auston, D.H. (1977) In Ultrafast Light Pulses S.L. Shapiro, ed. Springer-Verlag, Berlin, 1977.

    Google Scholar 

  • Ayral, J.L., J.P. Pochelle, J. Raffy, and M. Papuchon (1984) Optical Kerr coefficient measurement at 1.15 pm in single-mode optical fibers. Opt. Commun. 49, 405–408.

    Article  Google Scholar 

  • Baldeck, P.L. and R.R. Alfano (1987) Intensity effects on the stimulated four-photon spectra generated by picosecond pulses in optical fibers. Conference abstract # FQ7

    Google Scholar 

  • March meeting of the American Physical Society, New York, New York, 1987; J. Lightwave Technol. L.T-5, 1712–1715.

    Google Scholar 

  • Baldeck, P.L., F. Raccah, and Alfano R.R. (1987a) Observation of self-focusing in optical fibers with picosecond pulses. Opt. Lett. 12, 588–589.

    Article  Google Scholar 

  • Baldeck, P.L., P.P. Ho, and R.R. Alfano (1987b) Effects of self, induced-, and cross-phase modulations on the generation of picosecond and femtosecond white light supercontinua. Rev. Phys. Appl. 22, 1677–1694.

    Article  Google Scholar 

  • Baldeck, P.L., P.P. Ho, and R.R. Alfano (1987c) Experimental evidences for cross-phase modulation, induced-phase modulation and self-focusing on picosecond pulses in optical fibers. Conference abstract # TuV4, in Digest of the 1987 OSA annual meeting. Optical Society of America, Washington, D.C.

    Google Scholar 

  • Baldeck, P.L., F. Raccah, R. Garuthara, and R.R. Alfano (1987d) Spectral and temporal investigation of cross-phase modulation effects on picosecond pulses in singlemode optical fibers. Proceeding paper # TuC4, International Laser Science conference ILS-III, Atlantic City, New Jersey, 1987.

    Google Scholar 

  • Baldeck, P.L., R.R. Alfano, and G.P. Agrawal (1988a) Induced-frequency shift of copropagating pulses. Appl. Phys. Lett. 52, 1939–1941.

    Article  Google Scholar 

  • Baldeck, P.L., R.R. Alfano, and G.P. Agrawal (1988b) Observation of modulation instability in the normal dispersion regime of optical fibers. Conference abstract # MBB7, in Digest of the 1988 OSA annual meeting. Optical Society of America, Washington, D.C.

    Google Scholar 

  • Baldeck P.L., R.R. Alfano, and G.P. Agrawal (1988c) Induced-frequency shift, induced spectral broadening and optical amplification of picosecond pulses in a single-mode optical fiber. Proceeding paper # 624, Electrochemical Society symposium on nonlinear optics and ultrafast phenomena, Chicago, Illinois, 1988.

    Google Scholar 

  • Baldeck, P.L., R.R. Alfano, and G.P. Agrawal (1988d) Generation of sub-100–fsec pulses at 532 nm from modulation instability induced by cross-phase modulation in single-mode optical fibers. Proceeding paper # PD2, in Ultrafast Phenomena 6. Springer-Verlag, Berlin.

    Google Scholar 

  • Baldeck, P.L., R.R. Alfano (1989) Cross-phase modulation: a new technique for controlling the spectral, temporal and spatial properties of ultrashort pulses. SPIE Proceedings of the 1989 Optical Science Engineering conference, Paris, France.

    Google Scholar 

  • Chraplyvy, A.R. and J. Stone (1984) Measurement of cross-phase modulation in coherent wavelength-division multiplexing using injection lasers. Electron. Lett. 20, 996–997.

    Article  Google Scholar 

  • Chraplyvy, A.R., D. Marcuse and P.S. Henry (1984) Carrier-induced phase noise in angle-modulated optical-fiber systems. J. Lightwave Technol. LT-2, 6–10.

    Google Scholar 

  • Cornelius, P. and L. Harris (1981) Role of self-phase modulation in stimulated Raman scattering from more than one mode. Opt. Lett. 6, 129–131.

    Article  Google Scholar 

  • Dianov, E.M., A.Y. Karasik, P.V. Mamyshev, G.I. Onishchukov, A.M. Prokhorov, M.F. Stel’Makh, and A.A. Formichev (1984) Picosecond structure of the pump pulse in stimulated Raman scattering in optical fibers. Opt. Quantum Electron. 17, 187.

    Google Scholar 

  • Duguay, M.A. and J.W. Hansen (1969) An ultrafast light gate. Appl. Phys. Lett. 15, 192–194.

    Article  Google Scholar 

  • Dziedzic, J.M., R.H. Stolen, and A. Ashkin (1981) Optical Kerr effect in long fibers. Appl. Opt. 20, 1403–1406.

    Article  Google Scholar 

  • French, P.M.W., A.S.L. Gomes, A.S. Gouveia-Neto, and J.R. Taylor (1986) Picosecond stimulated Raman generation, pump pulse fragmentation, and fragment compression in single-mode optical fibers. IEEE J. Quantum Electron. QE-22, 2230.

    Google Scholar 

  • Gersten J., R.R. Alfano, and M. Belie (1980) Combined stimulated Raman scattering and continuum self-phase modulation. Phys. Rev. A # 21, 1222–1224.

    Google Scholar 

  • Gomes, A.S.L., W. Sibbet, and J.R. Taylor (1986) Spectral and temporal study of picosecond-pulse propagation in a single-mode optical fibers. Appl. Phys. B # 39, 44–46.

    Google Scholar 

  • Gomes, A.S.L., V.L. da Silva, and J.R. Taylor (1988) Direct measurement of nonlinear frequency chirp of Raman radiation in single-mode optical fibers using a spectral window method. J. Opt. Soc. Am. B# 5, 373–380.

    Google Scholar 

  • Gouveia-Neto, A.S., M.E. Faldon, A.S.B. Sombra, P.G.J. Wigley, and J.R. Taylor (1988a) Subpicosecond-pulse generation through cross-phase modulation-induced modulation instability in optical fibers. Opt. Lett. 12, 901–906.

    Article  Google Scholar 

  • Gouveia-Neto, A.S., M.E. Faldon, and J.R. Taylor (1988b) Raman amplification of modulation instability and solitary-wave formation. Opt. Lett. 12, 1029–1031.

    Article  Google Scholar 

  • Grudinin, A.B., E.M. Dianov, D.V. Korobkin, A.M. Prokhorov, V.N. Serkinand, and D.V. Khaidarov (1987) Decay of femtosecond pulses in single-mode optical fibers. Pis’ma Zh. Eksp. Teor. Fiz. 46, 175–177.

    Google Scholar 

  • Grudinin, A.B., E.M. Dianov, D.V. Korobkin, A.M. Prokhorov, V.N. Serkinand, and D.V. Khaidarov (1987) Decay of femtosecond pulses in single-mode optical fibers. Sov. Phys. JETP Lett. 46, 221, 225.

    Google Scholar 

  • Hasegawa, A. (1975). Plasma Instabilities and Nonlinear Effects. Springer-Verlag, Heidelberg.

    Book  Google Scholar 

  • Ho, P.P., Q.Z. Wang, D. Ji, and R.R. Alfano (1988) Propagation of harmonic crossphase-modulation pulses in ZnSe. Appl. Phys. Lett. 111–113.

    Google Scholar 

  • Hook, A.D. Anderson, and M. Lisak (1988) Soliton-like pulses in stimulated Raman scattering. Opt. Lett. 12, 114–116.

    Google Scholar 

  • Imoto, N., S. Watkins, and Y. Sasaki (1987) A nonlinear optical-fiber interferometer for nondemolition measurement of photon number. Optics Commun. 61, 159–163.

    Article  Google Scholar 

  • Islam, M.N., L.F. Mollenauer, R.H. Stolen (1986) Fiber Raman amplification soliton laser, in Ultrafast Phenomena 5. Springer-Verlag, Berlin.

    Google Scholar 

  • Islam, M.N., L.F. Mollenauer, R.H. Stolen, J.R. Simson, and H.T. Shang (1987a) Cross-phase modulation in optical fibers. Opt. Lett. 12, 625–627.

    Article  Google Scholar 

  • Islam, M.N., L.F. Mollenauer, R.H. Stolen, J.R. Simson, and H.T. Shang (1987b) Amplifier/compressor fiber Raman lasers. Opt. Lett. 12, 814–816.

    Article  Google Scholar 

  • Jaskorzynska, B. and D. Schadt (1988) All-fiber distributed compression of weak pulses in the regime of negative group-velocity dispersion. IEEE J. Quantum Electron. QE-24, 2117–2120.

    Google Scholar 

  • Johnson, A.M., R.H. Stolen, and W.M. Simpson (1986) The observation of chirped stimulated Raman scattered light in fibers. In Ultrafast Phenomena 5. Springer-Verlag, Berlin.

    Google Scholar 

  • Keiser, G. (1983) In Optical Fiber Communications. McGraw-Hill, New York. Kelley, P.L. (1965) Self-focusing of optical beams. Phys. Rev. Lett. 15, 1085.

    Google Scholar 

  • Kimura, Y., K.I. Kitayama, N. Shibata, and S. Seikai (1986) All-fibre-optic logic “AND” gate. Electron. Lett. 22, 277–278.

    Article  Google Scholar 

  • Kitayama, K.I., Y. Kimura, and S. Seikai (1985a) Fiber-optic logic gate. Appl. Phys. Lett. 46, 317–319.

    Article  Google Scholar 

  • Kitayama, K.I., Y. Kimura, K. Okamoto, and S. Seikai (1985) Optical sampling using an all-fiber optical Kerr shutter. Appl. Phys. Lett. 46, 623–625.

    Article  Google Scholar 

  • Levenson, M.D., R.M. Shelby, M. Reid, and D.F. Walls (1986) Quantum nondemoli- tion detection of optical quadrature amplitudes. Phys. Rev. Lett. 57, 2473–2476.

    Article  Google Scholar 

  • Lin, C. and M.A. Bosh (1981) Large Stokes-shift stimulated four-photon mixing in optical fibers. Appl. Phys. Lett. 38, 479–481.

    Article  Google Scholar 

  • Lu, Hian-Hua, Yu-Lin Li, and Jia-Lin Jiang (1985) On combined self-phase modulation and stimulated Raman scattering in fibers. Opt. Quantum Electron. 17, 187.

    Article  Google Scholar 

  • Manassah, J.T. (1987a) Induced phase modulation of the Raman pulse in optical fibers. Appl. Opt. 26, 3747–3749.

    Article  Google Scholar 

  • Manassah, J.T. (1987b) Time-domain characteristics of a Raman pulse in the presence of a pump. Appl. Opt. 26, 3750–3751.

    Google Scholar 

  • Manassah, J.T. (1987c) Amplitude and phase of a pulsed second-harmonic signal. J. Opt. Soc. Am. B# 4, 1235–1240.

    Google Scholar 

  • Manassah, J.T. (1988) Pulse compression of an induced-phase modulated weak signal. Opt. Lett. 13, 752–755.

    Article  Google Scholar 

  • Manassah, J.T. and O.R. Cockings (1987) Induced phase modulation of a generated second-harmonic signal. Opt. Lett. 12, 1005–1007.

    Article  Google Scholar 

  • Manassah, J.T., M. Mustafa, R.R. Alfano, and P.P. Ho (1985) Induced supercontinuum and steepening of an ultrafast laser pulse. Phys. Lett. 113A, 242–247.

    Article  Google Scholar 

  • Monerie, M. and Y. Durteste (1987) Direct interferometric measurement of nonlinear refractive index of optical fibers by cross-phase modulation. Electron. Lett. 23, 961–962.

    Article  Google Scholar 

  • Morioka, T., M. Saruwatari, and A. Takada (1987) Ultrafast optical multi/demultiplexer utilising optical Kerr effect in polarisation-maintaining single-mode optical fibers. Electron. Lett. 23, 453–454.

    Article  Google Scholar 

  • Nakashima, T., M. Nakazawa, K. Nishi, and H. Kubuta (1987) Effect of stimulated Raman scattering on pulse-compression characteristics. Opt. Lett. 12, 404–406.

    Article  Google Scholar 

  • Schadt, D., B. Jaskorzynska, and U. Osterberg (1986) Numerical study on combined stimulated Raman scattering and self-phase modulation in optical fibers influenced by walk-off between pump and Stokes pulses. J. Opt. Soc. Am. B # 3, 1257–1260.

    Google Scholar 

  • Schadt, D. and B. Jaskorzynska (1987a) Frequency chirp and spectra due to self-phase modulation and stimulated Raman scattering influenced by walk-off in optical fibers. J. Opt. Soc. Am. B # 4, 856–862.

    Google Scholar 

  • Schadt, D. and B. Jaskorzynska (1987b) Generation of short pulses from CW light by influence of cross-phase modulation in optical fibres. Electron. Lett. 23, 1091–1092.

    Article  Google Scholar 

  • Schadt, D. and B. Jaskorzynska (1988) Suppression of the Raman self-frequency shift by cross-phase modulation. J. Opt. Soc. Am. B # 5, 2374–2378.

    Google Scholar 

  • Shen, Y.R. (1984) In The Principles of Nonlinear Optics Wiley, New York.

    Google Scholar 

  • Shimizu, F. and B.P. Stoicheff (1969) Study of the duration and birefringence of self-trapped filaments in CS2. IEEE J. Quantum Electron. QE-5, 544.

    Google Scholar 

  • Stolen, R.H. (1975) Phase-matched stimulated four-photon mixing. IEEE J. Quantum Electron. QE-11, 213–215.

    Google Scholar 

  • Stolen, R.H. (1979) In Nonlinear properties of Optical fibers, S.E. Miller and A.G. Chynoweth, eds. Academic Press, New York, Chapter 5.

    Google Scholar 

  • Stolen, R.H. and A. Ashkin (1972) Optical Kerr effect in glass waveguide. Appl. Phys. Lett. 22, 294–296.

    Article  Google Scholar 

  • Stolen, R.H., M.A. Bosh, and C. Lin (1981) Phase matching in birefringent fibers. Opt. Lett. 6, 213–215.

    Article  Google Scholar 

  • Stolen, R.H. and A.M. Johnson (1986) The effect of pulse walk-off on stimulated Raman scattering in optical fibers. IEEE J. Quantum Electron. QE-22, 2230.

    Google Scholar 

  • Swartzlander, G.A., Jr., and A.E. Kaplan (1988) Self-deflection of laser beams in a thin nonlinear film. J. Opt. Soc. Am. B5, 765–768.

    Google Scholar 

  • Tai, K., A. Hasegawa, and A. Tornita (1986) Observation of modulation instability in optical fibers. Phys. Rev. Lett. 56, 135–138.

    Article  Google Scholar 

  • Tomlinson, W.J., R.H. Stolen, and A.M. Johnson (1985) Optical wave breaking of pulses in nonlinear optical fibers. Opt. Lett. 10, 457–459.

    Article  Google Scholar 

  • Trillo, S., S. Wabnitz, E.M. Wright, and G.I. Stegeman (1988) Optical solitary waves induced by cross-phase modulation. Opt. Lett. 13, 871–873.

    Article  Google Scholar 

  • Washio, K., K. Inoue, and T. Tanigawa (1980) Efficient generation near-IR stimulated light scattering in optical fibers pumped in low-dispersion region at 1.3 mm. Electron. Lett. 16, 331–333.

    Article  Google Scholar 

  • Weiner, A.M., J.P. Heritage, and R.H. Stolen (1986) Effect of stimulated Raman scattering and pulse walk-off on self-phase modulation in optical fibers. In Digest of the Conference on Lasers and Electro-Optics. Optical Society of America, Washington, D.C., p. 246.

    Google Scholar 

  • Weiner, A.M., J.P. Heritage, and R.H. Stolen (1988) Self-phase modulation and optical pulse compression influenced by stimulated Raman scattering in fibers. J. Opt. Soc. Am. B5, 364–372.

    Article  Google Scholar 

  • White, I.H., R.V. Penty, and R.E. Epworth (1988) Demonstration of the optical Kerr effect in an all-fibre Mach-Zehnder interferometer at laser diode powers. Electron. Lett. 24, 172–173.

    Article  Google Scholar 

  • Zysset B. and H.P. Weber (1986) Temporal and spectral investigation of Nd: YAG pulse compression in optical fibers and its application to pulse compression. In Digest of the Conference on Lasers and Electro-Optics. Optical Society of America, Washington, D.C., p. 182.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer Science+Business Media New York

About this chapter

Cite this chapter

Baldeck, P.L., Ho, P.P., Alfano, R.R. (1989). Cross-Phase Modulation: A New Technique for Controlling the Spectral, Temporal, and Spatial Properties of Ultrashort Pulses. In: Alfano, R.R. (eds) The Supercontinuum Laser Source. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-2070-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2070-9_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-2072-3

  • Online ISBN: 978-1-4757-2070-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics