Skip to main content

Omega-3 Fatty Acids in the Retina

  • Chapter
Dietary ω3 and ω6 Fatty Acids

Abstract

The retina and brain contain exceptionallyy high concentrations of docosahexaenoic acid (DHA, or 22:6 omega-3).1–3 This fatty acid is a component of the phospholipids, especially phosphatidylethanolamine and phosphatidylserine, which are basic structural constituents of cell membranes. Particularly rich in DHA are specialized neural membrans, such as those of synaptic endings45 and photoreceptor outer segments.6,7

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.E. Anderson. Lipids of ocular tissues. IV. A comparison of the phospholipids from the retina of six mammalian species. Exp. Eye Res. 10: 339–344 (1970).

    Article  PubMed  CAS  Google Scholar 

  2. J.S. O’Brien and E.L. Sampson. Fatty acid and fatty aldehyde composition of the major brain lipids in normal human gray matter, white matter, and myelin. J. Lipid Res. 6: 545–551 (1965).

    PubMed  Google Scholar 

  3. L. Svennerholm. Distribution and fatty acid composition of phosphoglycerides in normal human brain. J. Lipid Res. 9: 570–579 (1968).

    PubMed  CAS  Google Scholar 

  4. W.C. Breckenridge, I.G. Morgan, J.P. Zanetta, and G. Vincendon. Adult rat brain synaptic vesicles. II. Lipid composition. Biochim. Biophys. Acta 320: 681–686 (1973).

    Article  PubMed  CAS  Google Scholar 

  5. C. Cotman, M.L. Blank, A. Moehl, and F. Snyder. Lipid composition of synaptic plasma membranes isolated from rat brain by zonal ultracentrifugation. Biochemistry 8: 4606–4612 (1969).

    CAS  Google Scholar 

  6. R.E. Anderson, R.M. Benolken, P.A. Dudley, D.J. Landis, and T.G. Wheeler. Polyunsaturated fatty acids of photoreceptor membranes. Exp. Eye Res. 18: 205–213 (1974).

    Article  PubMed  CAS  Google Scholar 

  7. W.L. Stone, C.C. Farnsworth, and E.A. Dratz. A reinvestigation of the fatty acid content of bovine, rat and frog retinal rod outer segments. Exp. Eye Res. 28: 387–397 (1979).

    Article  PubMed  CAS  Google Scholar 

  8. F.J.M. Daemen. Vertebrate rod outer segment membranes. Biochim. Biophys. Acta 300:255–288 (1973).

    Google Scholar 

  9. R.E. Anderson and L. Sperling. Lipids of ocular tissues. VII. Positional distribution of the fatty acids in the phospholipids of bovine retina rod outer segments. Arch. Biochem. Biophys. 144:673–677 (1971).

    Google Scholar 

  10. R.D. Wiegand and R.E. Anderson. Phospholipid molecular species of frog rod outer segment membranes. Exp. Eye Res. 37: 159–173 (1983).

    Article  PubMed  CAS  Google Scholar 

  11. R.E. Anderson and L.D. Andrews. Biochemistry of retinal photoreceptor membranes in vertebrates and invertebrates, in: “Visual Cells in Evolution,” J. Westfall, ed., Raven Press, New York (1982).

    Google Scholar 

  12. M.I. Aveldano and N.G. Bazan. Molecular species of phosphatidylcholine, -ethanolamine, -serine, and -inositol in microsomal and photoreceptor membranes of bovine retina. J. Lipid Res. 24: 620–627 (1983).

    PubMed  CAS  Google Scholar 

  13. N.M. Giusto, M.I. De Boschero, H. Sprecher and M.I. Aveldano. Active labeling of phosphatidylcholines by [1-14C]docosahexaenoate in isolated photoreceptor membranes. Biochim. Biophys. Acta 860:137148 (1986).

    Google Scholar 

  14. N.P. Rotstein and M.I. Aveldano. Labeling of lipids of retina subcellular fractions by [1-14C]eicosatetraenoate (20:4(n-6)), docosapentaenoate (22:5(n-3)) and docosahexaenoate (22:6(n-3)). Biochim. Biophys. Acta 921:221–234 (1987).

    Google Scholar 

  15. J. Tinoco, P. Miljanich and B. Medwadowski. Depletion of docosahexaenoic acid in retinal lipids of rats fed a linolenic acid-deficient, linoleic acid-containing diet. Biochim. Biophys. Acta 486:575–578 (1977).

    Google Scholar 

  16. R.D. Wiegand, C.D. Joel, L.M. Rapp, J.C. Nielsen, M.B. Maude and R.E. Anderson. Polyunsaturated fatty acids and vitamin E in rat rod outer segments during light damage. Invest. Ophthalmol. Vis. Sci. 27: 727–733 (1986).

    CAS  Google Scholar 

  17. R.D. Wiegand, L.M. Rapp and R.E. Anderson. Ferrous ion-induced retinal degeneration: Biochemical changes in photoreceptor membranes. Invest. Ophthalmol. Vis. Sci. 26 (Supp1.3): 65 (1985).

    Google Scholar 

  18. R.W. Young. The renewal of photoreceptor cell outer segments. J. Cell Biol. 33: 61–72 (1967).

    Article  PubMed  CAS  Google Scholar 

  19. R.J. Mullen and M.M. LaVail. Inherited retinal dystrophy: Primary defect in pigment epithelium determined with experimental rat chimeras. Science 192: 799–801 (1976).

    CAS  Google Scholar 

  20. S.J. Fliesler and R.E. Anderson. Chemistry and metabolism of lipids in the vertebrate retina. Prog. Lipid Res. 22: 79–131 (1983).

    Article  PubMed  CAS  Google Scholar 

  21. M.L. Applebury and P.A. Hargrave. Molecular biology of the visual pigments. Vision Res. 26: 1881–1896 (1986).

    CAS  Google Scholar 

  22. A.A. Lamola, T. Yamane and A. Zipp. Effects of detergents and high pressures upon the metarhodopsin I to metarhodopsin II equilibrium. Biochemistry 15: 738–745 (1974).

    Google Scholar 

  23. R.A. Cone and W.H. Cobbs. Rhodopsin cycle in the living eye of the rat. Nature 221: 820–822 (1969).

    CAS  Google Scholar 

  24. P.K. Brown. Rhodopsin rotates in the visual receptor membrane. Nature New Biology 236: 35–38 (1972).

    Google Scholar 

  25. R.A. Cone. Rotational diffusion of rhodopsin in the visual receptor membrane. Nature New Biology 236: 39–43 (1972).

    Google Scholar 

  26. K.P. Coolbear, C.B. Bearde, and K.M.W. Keough. Gel to liquid-crystalline phase transitions of aqueous dispersions of polyunsaturated mixed acid phosphatidylcholines. Biochemistry 22: 1466–1473 (1983).

    Google Scholar 

  27. E.A. Dratz and A.J. Deese. The role of docosahexaenoic acid (22:6n-3) in biological membranes: Examples from photoreceptors and model membrane bilayers, in: “Health Effects of Polyunsaturated Fatty Acids in Seafoods,” A.P. Simopoulos, ed., Academic Press, New York (1986).

    Google Scholar 

  28. T.S. Weidmann, R.D Pates, J.M. Beach, A. Salmon, and M.F. Brown. Lipid-protein interactions mediate the photochemical function of rhodopsin. Biochemistry 27: 6469–6474 (1988).

    Google Scholar 

  29. E.A. Dratz, N. Ryba, A. Watts, and A.J. Deese. Studies of the essential role of docosahexaenoic acid (DHA), 22:6 omega-3, in visual excitation. Invest. Ophthalmol. Vis. Sci. 28 (Supp1.3): 96 (1987).

    Google Scholar 

  30. M.R. Paddy and F.W. Dahlquist. Simultaneous observation of order and dynamics at several defined positions in the single acyl chain using 2H NMR of single acyl chain perdeuterated phosphatidylcholines. Biochemistry 24: 5988–5995 (1985).

    CAS  Google Scholar 

  31. F. Millett, P.A. Hargrave, and M.A. Raftery. Natural abundance 13C nuclear magnetic resonance spectra of the lipid in intact bovine retinal rod outer segment membranes. Biochemistry 12: 3591–3592 (1973).

    CAS  Google Scholar 

  32. C. Arus, W.M. Westler, M. Barany, and J.L. Markley. Observation of the terminal methyl group in fatty acids of the linolenic series by a new 1H NMR pulse sequence providing spectral editing and solvent suppression. Application to excised frog muscle and rat brain. Biochemistry 25: 3346–3351 (1986).

    Article  PubMed  CAS  Google Scholar 

  33. C.D. Stubbs and A.D. Smith. The modification of mammalian membrane polyunsaturated fatty acid composition in relation to membrane fluidity and function. Biochim. Biophys. Acta 779: 87–137 (1984).

    Google Scholar 

  34. A.A. Spector and M.A. Yorek. Membrane lipid composition and cellular function. J. Lipid Res. 26: 1015–1035 (1985).

    PubMed  CAS  Google Scholar 

  35. J. Bernsohn and F.J. Spitz. Linoleic and linolenic acid dependency of some brain membrane-bound enzymes after lipid deprivation in rats. Biochem. Biophys. Res. Commun. 57: 293–298 (1974).

    CAS  Google Scholar 

  36. A. Orlacchio, C. Maffei, L. Binaglia, and G. Porcellati. The effect of membrane phospholipid acyl-chain composition on the activity of brain B-N-acetyl-D-glucosaminidase. Biochem. J. 195: 383–388 (1981).

    CAS  Google Scholar 

  37. R. Tanaka. Comparison of lipid effects on K+-Mg2+ activated pnitrophenyl phosphatase and Na+-K+-Mg2+ activated adenosine triphosphatase of membrane. J. Neurochem. 16: 1301–1307 (1969).

    Article  PubMed  CAS  Google Scholar 

  38. M. Foot, T.F. Cruz, and M.T. Clandinin. Effect of dietary lipid on synaptosomal acetylcholinesterase activity. Biochem. J. 211: 507–509 (1983).

    CAS  Google Scholar 

  39. N. Salem, H.-Y. Kim, and J.A. Yergey. Docosahexaenoic acid: Membrane function and metabolism, in: “Health Effects of Polyunsaturated Fatty Acids in Seafoods,” A.P. Simopoulos, ed., Academic Press, New York (1986).

    Google Scholar 

  40. V.A. Tyurin and N.V. Gorbunov. Fatty acid composition of aminophospholipids in protein microenvironment of plasmatic synaptic membranes of the brain in rat (in Russian). J. Evol. Biochem. Physiol. 591–594 (1983).

    Google Scholar 

  41. A.J. Deese, E.A. Dratz, F.W. Dahlquist, and M.R. Paddy. Interaction of rhodopsin with two unsaturated phosphatidylcholines: A deuterium nuclear magnetic resonance study. Biochemistry 20: 6420–6427 (1981).

    Article  PubMed  CAS  Google Scholar 

  42. M.A. Yorek, R.R. Bohnker, D.T. Dudley, and A.A. Spector. Comparative utilization of n-3 polyunsaturated fatty acids by cultured human Y79 retinoblastoma cells. Biochim. Biophys. Acta 795:277–285, (1984).

    Google Scholar 

  43. N.G. Bazan, D.L. Birkle, and T.J. Reddy. Docosahexaenoic acid (22:6n-3) is metabolized to lipoxygenase reaction products in the retina. Biochem. Biophys. Res. Commun. 125: 741–747 (1984).

    CAS  Google Scholar 

  44. E.L. Berson. Electroretinographic testing as an aid in determining visual prognosis in families with hereditery retinal degenerations, in: “Retina Congress,” R.C. Pruett and C.D.J. Regan, eds., Appleton-Century-Crofts, New York (1974).

    Google Scholar 

  45. R.M. Benolken, R.E. Anderson, and T.G. Wheeler. Membrane fatty acids associated with the electrical response in visual excitation. Science 182: 1253–1254 (1973).

    CAS  Google Scholar 

  46. T.G. Wheeler, R.M. Benolken, and R.E. Anderson. Visual membranes: Specificity of fatty acid precursors for the electrical response to illumination. Science 188: 1312–1314 (1975).

    CAS  Google Scholar 

  47. A. Nouvelot, E. Dedonder, P. Dewailly, and J.M. Bourre. Influence des n-3 exogenes sur la composition en acides gras polyinsatures de la retine, aspects structural et physiologique. Cah. Nutr. Diet. 20: 123–125 (1985).

    CAS  Google Scholar 

  48. I. Watanabe, M. Kato, H. Aonuma, A. Hasimoto, Y. Naito, A. Moriuchi, and H. Okuyama. Effect of dietary alpha-linolenate/linoleate balance on the lipid composition and electroretinographic responses in rats. Adv. Biosciences 62: 563–570 (1987).

    Google Scholar 

  49. M.A. Lamptey and B.L. Walker. A possible essential role for dietary linolenic acid in the development of the young rat. J. Nutr. 106: 86–93 (1976).

    PubMed  CAS  Google Scholar 

  50. N. Yamamoto, M. Saitoh, A. Moriuchi, M. Nomura, and H. Okuyama. Effect of dietary alpha-linoleate/linoleate balance on brain lipid compositions and learning ability of rats. J. Lipid Res. 28: 144–151 (1987).

    PubMed  CAS  Google Scholar 

  51. M. Neuringer, W.E. Connor, C. Van Petten, and L. Barstad. Dietary omega-3 fatty acid deficiency and visual loss in infant rhesus monkeys. J. Clin. Invest. 73: 272–276 (1984).

    Article  PubMed  CAS  Google Scholar 

  52. M. Neuringer, W.E. Connor, D.S. Lin, L. Barstad, and S. Luck. Biochemical and functional effects of prenatal and postnatal omega-3 fatty acid deficiency on retina and brain in rhesus monkeys. Proc. Natl. Acad. Sci. USA. 83: 4021–4025 (1986).

    Article  PubMed  CAS  Google Scholar 

  53. W.E. Connor, M. Neuringer, and D. Lin. The incorporation of docosahexaenoic acid into the brain of monkeys deficient in omega-3 essential fatty acids. Clin. Res. 33: 598A (1985).

    Google Scholar 

  54. M. Neuringer, W.E. Connor, D. Daigle, and L. Barstad. Electroretinogram abnormalities in young infant rhesus monkeys deprived of omega-3 fatty acids during gestation and postnatal development or only postnatally. Invest. Ophthalmol. Vis. Sci. 29 (Suppl. 3): 145 (1988).

    Google Scholar 

  55. B.L. Walker. Maternal diet and brain fatty acids in young rats. Lipids 2: 497–500 (1967).

    Article  Google Scholar 

  56. S.E. Carlson, P.G. Rhodes, and M.G. Ferguson. Docosahexaenoic acid status of preterm infants at birth and following feeding with human milk or formula. Am. J. Clin. Nutr. 44: 798–804 (1986)

    PubMed  CAS  Google Scholar 

  57. S.E. Carlson, P.G. Rhodes, V. S. Rao, and D.E. Goldgar. Effect of fish oil supplementation on the n-3 fatty acid content of red blood cell membranes in preterm infants. Pediatr. Res. 21: 507–510 (1987).

    Article  PubMed  CAS  Google Scholar 

  58. M.A. Crawford, A.G. Hassam, and B.M. Hall. Metabolism of essential fatty acids in the human fetus and neonate. Nutr. Metab. 21: 187188 (1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer Science+Business Media New York

About this chapter

Cite this chapter

Neuringer, M., Connor, W.E. (1989). Omega-3 Fatty Acids in the Retina. In: Galli, C., Simopoulos, A.P. (eds) Dietary ω3 and ω6 Fatty Acids. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-2043-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2043-3_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-2045-7

  • Online ISBN: 978-1-4757-2043-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics